US009116750B2

a2z United States Patent (10) Patent No.: US 9,116,750 B2
Archer et al. 45) Date of Patent: Aug. 25, 2015
59 QeThamNGCoutECTI: powmal A 98 Ml oo
andetal.
COMMUNICATIONS WITHIN A PARALLEL 2009/0031317 Al* 12009 Gopalan etal. 718/103
COMPUTER 2009/0031318 AL* 1/2009 Gopalanetal. 718/103
2009/0187915 Al* 7/2009 Chewetal. ... 718/104
(75) Inventors: Charles J. Archer, Rochester, MN (US); 2009/0320040 A1* 12/2009 RobiSONc.ccocveveuruncncnee 718/105
: 2010/0005080 Al* 12010 Pikeetal.ccccocevvrrenenn. 707/4
D{Ijlgh?l A El]gcgsot':'e’ ROChSSter’l MN 2010/0017804 Al* 12010 Guptactal. .. C718/102
gVA)&Jé’)SF]I; D. Easer'ltlilm;in ea“,ﬁs 2010/0115236 Al* 5/2010 Bataineh et al. 712/29
s ; Brian E. Smith, Knoxville, (Continued)
OTHER PUBLICATIONS
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) Broquedis et al. “hwloc: a Generic Framework for managing Hard-
ware Affinities in HPC Applications”; 2010 18" Euromicro Confer-
(*) Notice: Subject to any disclaimer, the term of this ence on Parallel, Distributed and Networked based Processing;
patent is extended or adjusted under 35 (Broquedis_2010.pdf; pp. 1-7).*
U.S.C. 154(b) by 398 days. (Continued)
(21) Appl. No.: 13/569,614 Primary Examiner — Emerson Puente
(22) Filed: Aus. 8. 2012 Assistant Examiner — Hiren Patel
' 5% (74) Attorney, Agent, or Firm — Edward J. Lenart; Kennedy
(65) Prior Publication Data Lenart Spraggins LLP
US 2014/0047451 Al Feb. 13,2014 (57) ABSTRACT
(51) Int.ClL Me.thqd.s, apparatuses, and computer program products for
GO6F 9/50 (2006.01) optimizing collective communications within a parallel com-
' uter comprising a plurality of hardware threads for execut-
(52) US.CL p prising a p Y
CPC GOGF 9/5061 (2013.01); GOGF 2209/505 ing software threads of a parallel application are provided.
"""" T (2013.01) Embodiments include a processor of a parallel computer
’ determining for each software thread, an affinity of the soft-
(58) Field of Classification Search

None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,178,145 B2* 2/2007 BONO ...ccoceovviviiniin, 718/100
8,286,170 B2* 10/2012 Franaszek 718/102
8,336,056 B1* 12/2012 Gadir 718/104
2006/0242389 Al* 10/2006 Browning et al. 712/229
2006/0253682 Al* 11/2006 Armstrong et al. . RA VA k)
2007/0150657 Al* 6/2007 Yigzaw etal. 7117128
2008/0114973 Al* 5/2008 Nortonetal. 712/228

Processor 199

ware thread to a particular hardware thread. Each affinity
indicates an assignment of a software thread to a particular
hardware thread. The processor also generates one or more
affinity domains based on the affinities of the software
threads. Embodiments also include a processor generating,
for each affinity domain, a topology of the affinity domain
based on the affinities of the software threads to the hardware
threads. According to embodiments of the present applica-
tion, a processor also performs, based on the generated
topologies of the affinity domains, a collective operation on
one or more software threads.

13 Claims, 17 Drawing Sheets

Determina For Each Software Thread, An Affinity O¢ The Software Thread To A Particular
Hardware Thread 1202

[]

Generate, Based On The Affinities Of The Software Threads, One Or More Affinity Domains,
104

Generate, For Each Core, A Care Affinity Domain Indicating The Software Thieads
Assigned To Tha Hardware Threads Within The Gore 1302

l

Core Aftnity Domains 1320 7

Generate, For Each MCM, A MCM Afinlty Domain Incicaling The Software Threads
Assigned To The Hardware Threads Within The MCM 1304

|

Generate, For The Progessor, A Processor Affinity Domain Indisating The Software Threads|
Ass.gned To The Hardware Threads Within The Processor 1306

Processor Affinity Domain 1324

|

Generate. For Each Affiity Domair, A Toaolgy Of T Affinity Damain Based Or: The Affnities
Of The Software Threads To The Hartiware Threads 1208

l

Parform, Based On The Ganerated Topologies Of The Affinkty Domains, A Corlective Operation
On One Or More Software Threads 1208

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MCHM Affinity Domains 1322, ; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

US 9,116,750 B2
Page 2

(56)

2010/0287279
2011/0035555
2011/0088038
2011/0161969
2012/0054750
2012/0102500
2012/0102501
2012/0272016
2014/0013330
2014/0143783

References Cited

U.S. PATENT DOCUMENTS

Al* 11/2010 Vaidyanathanetal. 709/226
Al* 2/2011 Wangetal. 711137
Al* 4/2011 Kruglick 718/104
Al* 6/2011 Arndtetal. ... 718/103
Al* 3/2012 Saripalli 718/100
Al* 4/2012 Waddington et al. 718/104
Al* 4/2012 Waddington et al. 718/105
Al* 10/2012 Belloetal. 711/154
Al* 1/2014 Wangetal. 718/103
Al* 52014 Boseetal. 718/102
OTHER PUBLICATIONS

Brochard et al., “IBM Tuning Guide for High Performance Comput-
ing Applications”; IBM Systems and Technology Group; Release
1.0; Apr. 7, 2009 (Brochard_ APR2009.pdf; pp. 1-41).*

Engelberts et al.; “Best Practice Guide—IBM Power”; Jun. 19,2012,
(Engelberts_ IBM__JUN2012.pdf; pp. 1-52).*

“A Performance Guide for HPC Applications on the IBM
System x iDataPlex dx360 M4 System”; IBM, Release 1.0.2, Jun. 19,
2012 (IBM_JUN2012.pdf; pp. 1-153).*

Srinivasan et al., “Processor Affinity and MPI Performance on SMP-
CMP Clusters”, The 11th IPDPS Workshop on Parallel and Distrib-
uted Scientific and Engineering Computing (‘PDSEC’), Apr. 2010,
pp. 1-8, IEEE.org, USA.

IBM, “IBM Parallel Environment Runtime Edition for AIX, V1.1
enables parallel application development and execution on select
IBM Power Systems clusters”, www.ibm.com [online] Jul. 2011, pp.
1-14, [accessed online Feb. 21, 2012], URL: http://www-01.ibm.
com/common/ssi/cgi-bin/ssialias? subtype=ca&infotype=an
&appname=iSource&supplier=897&letternum=ENUS211-237.

* cited by examiner

U.S. Patent Aug. 25, 2015 Sheet 1 of 17 US 9,116,750 B2

Parallel Active Messaging

Interface (PAMI) 218 Compute N/C:Ses 102

Processor 199

RAM 156

Collective Communication
Optimizer 198

Service
Application

124 |
i Node /O Node Service Node Pacallel
110 114 116 Computer
_T 100
Service
— Application
LAN 130 Interface
126
. User
Printer Termina 128

Data Storage
118

120

FIG. 1

U.S. Patent

Aug. 25,2015

Sheet 2 of 17

US 9,116,750 B2

108

Compute Node 152
RAM 156
Prooesio\rs 164 Application Program 158
N Software Threads 197
1)1 L)1 Application M ing Module 21
ree pplication Messaging Module 216
ALU 166 ALU 166
PAMI 218
Collective Communication Optimizer
: 198
Front Side v
emo
Bus 161 Bus " Operating System 162
Bus Adapter 154
194
DMA Controlter
225
Extension Bus 168 #
IR 169
v
Point To Point ALU 170
Adapter +
180 ,
Ethernet JTAG Collective
Adapter Slave AA AA Operations Adapter
172 176 188
Y M
+X -Y
181 184 Y
L -X +7 ,
Gigabit JTAG 182 185 Children Parent
Ethemet Master _+¥ __! 10 192
174 178
— - 183 86 . J
- N
N goli:actpve
Point To Point perations
Network Network
106 FIG. 2

U.S. Patent Aug. 25, 2015 Sheet 3 of 17 US 9,116,750 B2

-Y Compute Node 152
184
X Point To Point e # X
-) Adapter > 181
e 180 §\
183

U.S. Patent Aug. 25, 2015 Sheet 4 of 17 US 9,116,750 B2

Parent
192

Compute Node 152

Collective
Operations Adapter
188

A A

FIG. 3B

Children
190

U.S. Patent Aug. 25, 2015 Sheet 5 of 17 US 9,116,750 B2

Dots Represent
Compute Nodes

~Y

102
184
\J
-7
186
A Parallel Operations Network, Organized F G 4

As A 'Torus’ Or ‘Mesh’
108

U.S. Patent Aug. 25, 2015 Sheet 6 of 17 US 9,116,750 B2

Physical Root

Links
103 ~
5‘ \ Branch
Nodes
¢ o ¢ o o o ¢ o
i £ A A L N R
{ ““. O { ‘ R S Leaf
; v v v v v v i Nodes
e 00 006 o0 o0 e o0 o 206

A Collective Operations Network Dots Represent
Organized As A Binary Tree Compute Nodes
106 102

FIG. 5

U.S. Patent

Aug. 25, 2015

Application 158

Application Messaging Module
216

Parallel Active Messaging
Interface (PAMI') 218

Data Communications
Resources 220

T

Origin Compute Node
222

Sheet 7 of 17

Application .

Layer 208 Application 158

Application 1 Application Messaging Module
Messaging Layer 216

210 ¢io
System

Messaging Parallel Active Messaging

Layer 212 Interface (PAMI) 218

Hardware Data Communications

Layer 214 Resources 220

T

Target Compute Node
224

FIG. 6

US 9,116,750 B2

U.S. Patent

Aug. 25, 2015 Sheet 8 of 17 US 9,116,750 B2
Application: MPI Module 258
&
- MPI
Task ID 250 Calo MPI Name 249
256 Functions
Thread }{Thread || Thread{ | Thread £ 260 Thread | | Thread
251 |} 252 || 253 || 254 |lam 7y 262 || 264
- — |
vances
Posts 208 Cagk;zcks Posts Ad Advances
Advances 5% 274 vances 218
268 I 270 T 216 L Callbacks
280
]
Y Y Y Y
Task Task
Work Work List List Work Work
Queue Queue 286 208 Queue Queue
282 284 — I 306 308
e o NI] = -
Endpoint Endpoint
Table Table
Context Context 288 300 Context Context
290 292 310 312
Resources Resources Resources
204 296 314
PAMI Client For Application 302 PAMI Client For MPI Library 304

PAMI PAMI Configuration 318

Initialization | | ¢ 1 |Appn. Name 320 Clients 322

Functions Tasks 324 Contexts 326
316 Endpoints 328 Resources 330

Parallel Active Messaging Interface (PAMI') 218

FIG. 7

U.S. Patent

Aug. 25,2015

Sheet 9 of 17

US 9,116,750 B2

Data Communications Resources 220

Gigabit Ethernet Fibre Channel
Adapter 238 Adapter 242 Tree Network 106
Infiniband Adapter PCI Express Adapter
240 246 Shared Memory 227
DMA Controller 225 DMA Controller 226
o | DMA Engine Network DMA Engine <
Injection | | Receive Injection | | Receive
FIFQ 230} |FIFO 232 FIFO 230| jFIFO 232
| 2 ||| 26 | 2 |2 |
[2)] 286 | N HEE
Y Qrigin Endoint 352 Target Endoint 354 v
RAM 165 Context 512 Context 513 RAM 16
Post(...) 480 Post(...) 481
Transfer Advance(...) 482 Advance(...) 483 Transfer
Data Data
494 Work Queue 282 Work Queue 284 494
PUT(...) 390

Application 158

Application 159

FIG. 8A

U.S. Patent

Aug. 25, 2015

Sheet 10 of 17

US 9,116,750 B2
DMA Controller 225
DMA Engine 228
>
Transmit 502
Network
> | Receive 504 ', 108
Injection Receive
FIFO 230 FIFO 232
(2] (=]
(]| =]

Y Origin Endoint 352 Target Endoint 35 l
RAM 155 rigin Endoint 382 d 994 RAM 156
Context 512 Context 513
Transfer Post(...) 480 Post(...) 481 Transfer
Data Advance(...) 482 Advance(...) 483 Data
494 494
Work Queue 282 Work Queue 284

PUT(...) 390

Application 158

Application 159

Compute Node 152

FIG. 8B

U.S. Patent

Aug. 25, 2015 Sheet 11 of 17

US 9,116,750 B2

Application 158

+
I T T

IBM MPI MPICH UrC chnggﬁe ARMCI
502 504 506 510
508
Y Y Y Y Y
Context
512
Functions:
Create(...) 472
Destroy(...) 474
Lock(...) 476 Context Context Context Context
Unlock(...) 478 514 516 518 520
Post{...) 480
Advance(...) 482
Alg_Query{...)
484
Resources Resources Resources Resources Resources
822 524 526 528 530
PAMI Client PAMI Client PAMI Client PAMI Client PAMI Client
932 534 536 538 240
Initialization
Functions — PAMI Configuration 318
316
Parallel Active Messaging Interface (‘PAMI) 218

FIG. 9

U.S. Patent Aug. 25,2015

Sheet 12 of 17

US 9,116,750 B2

Compute Node 152

Application 158 Task D
250

Thread{ | Thread| | Thread
251 | 252 253

Appn. Msg. Modu

Shared Memony 297

Endpoint 338

Endpoint 340

Client { | Task | |Context

Client | | Task

302 {1 332 || 290

303 [} 333

Context
292

DMA Controller 225

R

Shared

Memory-—m-

346

4

Network
108

Compute Node 153

v

Application 157
Task 1D

DMA
Controfler
226

n

Task ID
257

249 Appn. Msg.
Module 216

Endpoint 342

Client {| Task | {Context
304 {] 34 310

Application 159

Appn. Msg.
Madule 216

Endpoint 344

Client
305

Task
336

Context
312

Shared Memory 348

FIG. 10

U.S. Patent Aug. 25, 2015 Sheet 13 of 17 US 9,116,750 B2

Processor 198

Multi-Chip Module (MCM) 1110 Mutti-Chip Module (MCM) 1111

o b 338 §33dapue b3YBY 333 Y

Hardware
Core 1124 Core 1125

Threads 1160 | [Core 1120| {Core 1121
A3 JrY e o RYYY D) Jane
Core 1126 Core 1127

162 Core 1122 Core 1123

s
—
-b\

N

.y
s
o
(@]

Multi-Chip Module {(MCM) 1112 Mutti-Chip Module (MCM) 1113

A TEENEREEN e # PP NPRPEN

Core 1128 Core 1129 Core 1132 Core 1133

rp33y 33y 3333 333«

Core 1130 Core 1131 Core 1134 Core 1135

|

et
—
~
o

Jo—
—
r\)\\

\

AN
ey
~
[

N
N

FIG. 11

U.S. Patent Aug. 25, 2015 Sheet 14 of 17 US 9,116,750 B2

Processor 199

Determine For Each Software Thread, An Affinity Of The Software Thread To A Particular
Hardware Thread, Each Affinity Indicating An Assignment Of A Software Thread To A Particular
Hardware Thread 1202

{
/ Affinities 1220 /

Y

Generate, Based On The Affinities Of The Software Threads, One Or More Affinity Domains,
Where An Affinity Domain Indicates Which Software Threads Are Assigned To Hardware
Threads Of The Same Hardware Domain 1204

I |
|]
| !
| i
| i
|]
I]
I i
I]
r \ '
| }
I |
I]
I !
] J]
: / Affinity Domaing 1222 / :
| !
I]
I i
|]
I !
I i
|]
I]
| }
I |
I]
i !
I]
I |
|]
I]

!

Generate, For Each Affinity Domain, A Topology Of The Affinity Domain Based On The Affinities
Of The Software Threads To The Hardware Threads 1206

I

/ Topologies 1224 /

Perform, Based On The Generated Topologies Of The Affinity Domains, A Collective Operation
On One Or More Software Threads 1208

FIG. 12

U.S. Patent Aug. 25, 2015 Sheet 15 of 17 US 9,116,750 B2

Processor 199

Determine For Each Software Thread, An Affinity Of The Software Thread To A Particular
Hardware Thread 1202

v

Generate, Based On The Affinities Of The Software Threads, One Or More Affinity Domains,
1204

Generate, For Each Core, A Core Affinity Domain Indicating The Software Threads
Assigned To The Hardware Threads Within The Core 1302

/ Core Affinity Domains 1320 /

Y

Generate, For Each MCM, A MCM Affinity Domain Indicating The Software Threads
Assigned To The Hardware Threads Within The MCM 1304

|
|
|
|
|
!
|
|
|
|
|
!
|
|
|
|
!
! ,
: / MCM Affinity Domains 1322 //
|
|
|
|
|
|
|
!
|
!
|
|
|
!
|
!
|

Y

Generate, For The Processor, A Processor Affinity Domain Indicating The Software Threads
Assigned To The Hardware Threads Within The Processor 1306

I
/ Processor Affinity Domain 1324 /

A J

Generate, For Each Affinity Domain, A Topology Of The Affinity Domain Based On The Affinities
Of The Software Threads To The Hardware Threads 1206

Y

Perform, Based On The Generated Topologies Of The Affinity Domains, A Collective Operation
On One Or More Software Threads 1208

U.S. Patent Aug. 25, 2015 Sheet 16 of 17 US 9,116,750 B2

Processor 199

Determine For Each Software Thread, An Affinity Of The Software Thread To A Particular
Hardware Thread 1202

Query An Operating System For Software Thread Locality Information Corresponding To The
Software Thread 1402

/ Thread Loc. Info 1420{'/

Generate, Based On The Affinities Of The Software Threads, One Or More Affinity Domains, 1204

v

Generate, For Each Affinity Domain, A Topology Of The Affinity Domain Based On The Affinities Of
The Software Threads To The Hardware Threads 1206

Generate, For Each Affinity Domain, An N-ary Tree Representing A Communication Organization
Among The Software Threads Associated With The Affinity Domain 1404

[]
Y

Perform, Based On The Generated Topologies Of The Affinity Domains, A Collective Operation
On One Or More Software Threads 1208

Perform, For Each Affinity Domain, In Accordance With The Generated N-ary Tree, A Reduction
Operation On The Software Threads Associated With The Affinity Domain 1406

|

/ Red. Operation 1424 /

U.S. Patent Aug. 25, 2015 Sheet 17 of 17 US 9,116,750 B2

Processor 199 '

Determine For Each Software Thread, An Affinity Of The Software Thread To A Particular Hardware
Thread 1202

Y

Generate, Based On The Affinities Of The Software Threads, One Or More Affinity Domains, 1204

Y

Generate, For Each Affinity Domain, A Topology Of The Affinity Domain Based On The Affinities Of
The Software Threads To The Hardware Threads 1206

Designate, For Each Affinity Domain, An Affinity Domain Leader 1502

i
/ Aff. Dom. Leaders 1522 //

Perform, Based On The Generated Topologies Of The Affinity Domains, A Collective Operation On
One Or More Software Threads 1208

Perform A Barrier Operation On Each Of The Affinity Domain Leaders 1504

]
l / Barrier Operation 1524 /

Broadcast, For Each Affinity Domain Leader, From The Affinity Domain Leader To The Software
Threads Within The Affintly Domain Corresponding To The Affinity Domain Leader, Resuilts Of
The Barrier Operation 1506

/ Results 1526 /

|

FIG. 15

US 9,116,750 B2

1

OPTIMIZING COLLECTIVE
COMMUNICATIONS WITHIN A PARALLEL
COMPUTER

BACKGROUND OF THE INVENTION

1. Field of the Invention

The field of the invention is data processing, or, more
specifically, methods, apparatuses, and computer program
products for optimizing collective communications within a
parallel computer.

2. Description of Related Art

The development of the EDVAC computer system of 1948
is often cited as the beginning of the computer era. Since that
time, computer systems have evolved into extremely compli-
cated devices. Today’s computers are much more sophisti-
cated than early systems such as the EDVAC. Computer sys-
tems typically include a combination of hardware and
software components, application programs, operating sys-
tems, processors, buses, memory, input/output devices, and
so on. As advances in semiconductor processing and com-
puter architecture push the performance of the computer
higher and higher, more sophisticated computer software has
evolved to take advantage of the higher performance of the
hardware, resulting in computer systems today that are much
more powerful than just a few years ago.

Parallel computing is an area of computer technology that
has experienced advances. Parallel computing is the simulta-
neous execution of the same application (split up and spe-
cially adapted) on multiple processors in order to obtain
results faster. Parallel computing is based on the fact that the
process of solving a problem usually can be divided into
smaller jobs, which may be carried out simultaneously with
some coordination.

Parallel computers execute parallel algorithms. A parallel
algorithm can be split up to be executed a piece at a time on
many different processing devices, and then put back together
again at the end to get a data processing result. Some algo-
rithms are easy to divide up into pieces. Splitting up the job of
checking all of the numbers from one to a hundred thousand
to see which are primes could be done, for example, by
assigning a subset of the numbers to each available processor,
and then putting the list of positive results back together. In
this specification, the multiple processing devices that
execute the individual pieces of a parallel program are
referred to as ‘compute nodes.” A parallel computer is com-
posed of compute nodes and other processing nodes as well,
including, for example, input/output (‘I/O’) nodes, and ser-
vice nodes.

Parallel algorithms are valuable because it is faster to per-
form some kinds of large computing jobs via a parallel algo-
rithm than it is via a serial (non-parallel) algorithm, because
of'the way modern processors work. It is far more difficult to
construct a computer with a single fast processor than one
with many slow processors with the same throughput. There
are also certain theoretical limits to the potential speed of
serial processors. On the other hand, every parallel algorithm
has a serial part and so parallel algorithms have a saturation
point. After that point adding more processors does not yield
any more throughput but only increases the overhead and
cost.

Parallel algorithms are designed also to optimize one more
resource the data communications requirements among the
nodes of a parallel computer. There are two ways parallel
processors communicate, shared memory or message pass-
ing. Shared memory processing needs additional locking for
the data and imposes the overhead of additional processor and

20

40

45

2

bus cycles and also serializes some portion of the algorithm.
Message passing processing uses high-speed data communi-
cations networks and message buffers, but this communica-
tion adds transfer overhead on the data communications net-
works as well as additional memory need for message buffers
and latency in the data communications among nodes.
Designs of parallel computers use specially designed data
communications links so that the communication overhead
will be small but it is the parallel algorithm that decides the
volume of the traffic.

Many data communications network architectures are used
for message passing among nodes in parallel computers.
Compute nodes may be organized in a network as a ‘torus’ or
‘mesh,” for example. Also, compute nodes may be organized
in a network as a tree. A torus network connects the nodes in
a three-dimensional mesh with wrap around links. Every
node is connected to its six neighbors through this torus
network, and each node is addressed by its x, y, z coordinate
in the mesh. In a tree network, the nodes typically are con-
nected into a binary tree: each node has a parent and two
children (although some nodes may only have zero children
or one child, depending on the hardware configuration). In
computers that use a torus and a tree network, the two net-
works typically are implemented independently of one
another, with separate routing circuits, separate physical
links, and separate message buffers.

A torus network lends itself to point to point operations, but
a tree network typically is inefficient in point to point com-
munication. A tree network, however, does provide high
bandwidth and low latency for certain collective operations,
message passing operations where all compute nodes partici-
pate simultaneously, such as, for example, an allgather.

SUMMARY OF THE INVENTION

Methods, apparatuses, and computer program products for
optimizing collective communications within a parallel com-
puter comprising a plurality of hardware threads for execut-
ing software threads of a parallel application are provided.
Embodiments include a processor of a parallel computer
determining for each software thread, an affinity of the soft-
ware thread to a particular hardware thread. Each affinity
indicates an assignment of a software thread to a particular
hardware thread. The processor also generates one or more
affinity domains based on the affinities of the software
threads. An affinity domain indicates which software threads
are assigned to hardware threads of the same hardware
domain. A hardware domain may refer to an organizational
level within a processor. Examples of a hardware domain
include a core domain, a multi-chip module (MCM) domain,
and a processor domain. Embodiments also include a proces-
sor generating, for each affinity domain, a topology of the
affinity domain based on the affinities of the software threads
to the hardware threads. According to embodiments of the
present application, a processor also performs, based on the
generated topologies of the affinity domains, a collective
operation on one or more software threads.

The foregoing and other objects, features and advantages
of the invention will be apparent from the following more
particular descriptions of exemplary embodiments of the
invention as illustrated in the accompanying drawings
wherein like reference numbers generally represent like parts
of exemplary embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 sets forth a block and network diagram of an
example parallel computer that optimizes collective commu-
nications according to embodiments of the present invention.

US 9,116,750 B2

3

FIG. 2 sets forth a block diagram of an example compute
node for use in a parallel computer that optimizes collective
communications according to embodiments of the present
invention.

FIG. 3A illustrates an example of a Point To Point Adapter
useful in parallel computers that optimize collective commu-
nications according to embodiments of the present invention.

FIG. 3B illustrates an example of a Collective Operations
Adapter useful in a parallel computer that optimizes collec-
tive communications according to embodiments of the
present invention.

FIG. 4 sets forth a line drawing illustrating an example data
communications network optimized for point-to-point opera-
tions useful in parallel computers that optimize collective
communications according to embodiments of the present
invention.

FIG. 5 illustrates an example data communications net-
work optimized for collective operations by organizing com-
pute nodes in a tree.

FIG. 6 sets forth a block diagram of an example protocol
stack useful in parallel computers that optimize collective
communications according to embodiments of the present
invention.

FIG. 7 sets forth a functional block diagram of an example
PAMI for use in parallel computers that optimize collective
communications according to embodiments of the present
invention.

FIG. 8A sets forth a block diagram of example data com-
munications resources useful in parallel computers that opti-
mize collective communications according to embodiments
of the present invention.

FIG. 8B sets forth a functional block diagram of an
example DMA controller operatively coupled to a network—
in an architecture where this DMA controller is the only
DMA controller on a compute node—and an origin endpoint
and its target endpoint are both located on the same compute
node.

FIG. 9 sets forth a functional block diagram of an example
PAMI useful in parallel computers that optimize collective
communications according to embodiments of the present
invention in which the example PAMI operates, on behalf of
an application, with multiple application messaging modules
simultaneously.

FIG. 10 sets forth a functional block diagram of example
endpoints useful in parallel computers that optimize collec-
tive communications according to embodiments of the
present invention.

FIG. 11 sets forth a flow chart illustrating a functional
block diagram of an example processor that includes collec-
tive communication optimizer useful for optimization of col-
lective communications in a parallel computer according to
embodiments of the present invention.

FIG. 12 sets forth a flow chart illustrating an example
method of optimizing collective communications within a
parallel computer according to embodiments of the present
invention.

FIG. 13 sets forth a flow chart illustrating another example
method of optimizing collective communications within a
parallel computer according to embodiments of the present
invention.

FIG. 14 sets forth a flow chart illustrating another example
method of optimizing collective communications within a
parallel computer according to embodiments of the present
invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 15 sets forth a flow chart illustrating another example
method of optimizing collective communications within a
parallel computer according to embodiments of the present
invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Example methods, computers, and computer program
products for optimizing collective communications within a
parallel computer according to embodiments of the present
invention are described with reference to the accompanying
drawings, beginning with FIG. 1. FIG. 1 sets forth a block and
network diagram of an example parallel computer (100) that
optimizes collective communications according to embodi-
ments of the present invention. The parallel computer (100) in
the example of FIG. 1 is coupled to non-volatile memory for
the computer in the form of data storage device (118), an
output device for the computer in the form of printer (120),
and an input/output device for the computer in the form of
computer terminal (122).

The parallel computer (100) in the example of FIG. 1
includes a plurality of compute nodes (102). The compute
nodes (102) are coupled for data communications by several
independent data communications networks including a high
speed Ethernet network (174), a Joint Test Action Group
(‘JTAG’) network (104), a tree network (106) which is opti-
mized for collective operations, and a torus network (108)
which is optimized point to point operations. Tree network
(106) is a data communications network that includes data
communications links connected to the compute nodes so as
to organize the compute nodes as a tree. Each data commu-
nications network is implemented with data communications
links among the compute nodes (102). The data communica-
tions links provide data communications for parallel opera-
tions among the compute nodes of the parallel computer.

In addition, the compute nodes (102) of parallel computer
(100) are organized into at least one operational group (132)
of compute nodes for collective parallel operations on parallel
computer (100). An operational group of compute nodes is
the set of compute nodes upon which a collective parallel
operation executes. Collective operations are implemented
with data communications among the compute nodes of an
operational group. Collective operations are those functions
that involve all the compute nodes of an operational group. A
collective operation is an operation, a message-passing com-
puter program instruction that is executed simultaneously,
that is, at approximately the same time, by all the compute
nodes in an operational group of compute nodes. Such an
operational group may include all the compute nodes in a
parallel computer (100) or a subset all the compute nodes.
Collective operations are often built around point to point
operations. A collective operation requires that all processes
on all compute nodes within an operational group call the
same collective operation with matching arguments. A
‘broadcast’ is an example of a collective operation for moving
data among compute nodes of an operational group. A
‘reduce’ operation is an example of a collective operation that
executes arithmetic or logical functions on data distributed
among the compute nodes of an operational group. A ‘barrier
operation’ is an example of a collective operation that is
issued by each thread participating in the barrier operation
and only can complete when all threads have entered and left
the collective barrier operation. An operational group may be
implemented as, for example, an MPI ‘communicator.’

‘MPI refers to ‘Message Passing Interface,” a prior art
applications messaging module or parallel communications

US 9,116,750 B2

5

library, an application-level messaging module of computer
program instructions for data communications on parallel
computers. Such an application messaging module is dis-
posed in an application messaging layer in a data communi-
cations protocol stack. Examples of prior-art parallel com-
munications libraries that may be improved for use with
parallel computers that optimize collective communications
according to embodiments of the present invention include
IBM’s MPI library, the ‘Parallel Virtual Machine’ (‘PVM”)
library, MPICH, OpenMPI, and LAM/MPI. MPI is promul-
gated by the MPI Forum, an open group with representatives
from many organizations that define and maintain the MPI
standard. MPI at the time of this writing is a de facto standard
for communication among compute nodes running a parallel
program on a distributed memory parallel computer. This
specification sometimes uses MPI terminology for ease of
explanation, although the use of MPI as such is not a require-
ment or limitation of the present invention.

Most collective operations are variations or combinations
of four basic operations: broadcast, gather, scatter, and
reduce. In a broadcast operation, all processes specify the
same root process, whose buffer contents will be sent. Pro-
cesses other than the root specify receive buffers. After the
operation, all buffers contain the message from the root pro-
cess.

A scatter operation, like the broadcast operation, is also a
one-to-many collective operation. All processes specity the
same receive count. The send arguments are only significant
to the root process, whose buffer actually contains
sendcount™*N elements of a given datatype, where N is the
number of processes in the given group of compute nodes.
The send buffer will be divided equally and dispersed from
the root to all processes (including the root). Each process is
assigned a sequential identifier termed a ‘rank.’ After the
operation, the root has sent sendcount data elements to each
process in increasing rank order. Rank 0 (the root process)
receives the first sendcount data elements from the send
buffer. Rank 1 receives the second sendcount data elements
from the send buffer, and so on.

A gather operation is a many-to-one collective operation
that is a complete reverse of the description of the scatter
operation. That is, a gather is a many-to-one collective opera-
tion in which elements of a datatype are gathered from the
ranked processes into a receive buffer of the root process.

A reduce operation is also a many-to-one collective opera-
tion that includes an arithmetic or logical function performed
on two data elements. All processes specify the same ‘count’
and the same arithmetic or logical function. After the reduc-
tion, all processes have sent count data elements from com-
pute node send buffers to the root process. In a reduction
operation, data elements from corresponding send buffer
locations are combined pair-wise by arithmetic or logical
operations to yield a single corresponding element in the root
process’s receive buffer. Application specific reduction
operations can be defined at runtime. Parallel communica-
tions libraries may support predefined operations. MPI, for
example, provides the following pre-defined reduction opera-
tions:

MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum
MPI_PROD product
MPI_LAND logical AND
MPI_BAND bitwise AND
MPI_LOR logical OR

10

15

20

25

30

35

40

45

50

55

60

65

-continued
MPI_BOR bitwise OR
MPI_LXOR logical exclusive OR
MPI_BXOR bitwise exclusive OR

In addition to compute nodes, the example parallel com-
puter (100) includes input/output (‘I/O’) nodes (110, 114)
coupled to compute nodes (102) through one of the data
communications networks (174). The I/O nodes (110, 114)
provide 1/O services between compute nodes (102) and I/O
devices (118, 120, 122). I/O nodes (110, 114) are connected
for data communications I/O devices (118, 120, 122) through
local area network (‘LAN’) (130). Computer (100) also
includes a service node (116) coupled to the compute nodes
through one of the networks (104). Service node (116) pro-
vides service common to pluralities of compute nodes, load-
ing programs into the compute nodes, starting program
execution on the compute nodes, retrieving results of program
operations on the compute nodes, and so on. Service node
(116) runs a service application (124) and communicates with
users (128) through a service application interface (126) that
runs on computer terminal (122). As the term is used here, a
parallel active messaging interface or ‘PAMI’ (218) is a sys-
tem-level messaging layer in a protocol stack of a parallel
computer that is composed of data communications end-
points each of which is specified with data communications
parameters for a thread of execution on a compute node of the
parallel computer. The PAMI is a ‘parallel’ interface in that
many instances of the PAMI operate in parallel on the com-
pute nodes of a parallel computer. The PAMI is an ‘active
messaging interface’ in that data communications messages
in the PAMI are active messages, ‘active’ in the sense that
such messages implement callback functions to advise of
message dispatch and instruction completion and so on,
thereby reducing the quantity of acknowledgment traffic, and
the like, burdening the data communication resources of the
PAMI.

Each data communications endpoint of a PAMI is imple-
mented as a combination of a client, a context, and a task. A
‘client’ as the term is used in PAMI operations is a collection
of data communications resources dedicated to the exclusive
use of an application-level data processing entity, an applica-
tion or an application messaging module such as an MPI
library. A ‘context’ as the term is used in PAMI operations is
composed of a subset of a client’s collection of data process-
ing resources, context functions, and a work queue of data
transfer instructions to be performed by use of the subset
through the context functions operated by an assigned thread
of execution. In at least some embodiments, the context’s
subset of a client’s data processing resources is dedicated to
the exclusive use of the context. A ‘task’ as the term is used in
PAMI operations refers to a canonical entity, an integer or
objection oriented programming object, that represents in a
PAMI a process of execution of the parallel application. That
is, a task is typically implemented as an identifier of a par-
ticular instance of an application executing on a compute
node, a compute core on a compute node, or a thread of
execution on a multi-threading compute core on a compute
node. In the example of FIG. 1, the compute nodes (102), as
well as PAMI endpoints on the compute nodes, are coupled
for data communications through the PAMI (218) and
through data communications resources such as collective
network (106) and point-to-point network (108).

The example parallel computer (100) of FIG. 1 is improved
to optimize collective communications according to embodi-
ments of the present invention. Each compute node (102) in

US 9,116,750 B2

7

the example of FIG. 1 is configured to execute a plurality of
processes. Such a process may be a process in PAMI (a PAMI
endpoint, for example), a process representing an instance of
an application, or other type of process. Each compute node
also includes one or more processors and memory, such as
random access memory (RAM).

In typical operation, an operating system within a compute
node assigns portions of address space to each processor of
the compute node, and, to the extent that the processors
include multiple compute cores, treats each compute core as
a separate processor with its own assignment of a portion of
core memory or RAM for a separate heap, stack, memory
variable storage, and so on. The default architecture for such
apportionment of memory space is that each processor or
compute core operates its assigned portion of memory sepa-
rately, with no ability to access memory assigned to another
processor or compute core. Upon request, however, the oper-
ating system grants to one processor or compute core the
ability to access a segment of memory that is assigned to
another processor or compute core, and such a segment is
referred to in this specification as a ‘segment of shared
memory.’

In the example of FIG. 1, an example processor (199) and
RAM (156) of a compute node is illustrated. A collective
communication optimizer (198) includes computer program
instructions that when executed cause the example processor
(199) to carry out the step of determining for each software
thread, an affinity of the software thread to a particular hard-
ware thread. A software thread is a thread of execution con-
taining a private stack and local variables in a common
address space as other threads. Each affinity indicates an
assignment of a software thread to a particular hardware
thread. The collective communication optimizer (198) also
includes computer program instructions that when executed
cause the example processor (199) to carry out the step of
generating one or more affinity domains based on the affini-
ties of the software threads. An affinity domain indicates
which software threads are assigned to hardware threads of
the same hardware domain. A hardware domain may refer to
an organizational level within a processor. Examples of a
hardware domain include a core domain, a multi-chip module
(MCM) domain, and a processor domain. The collective com-
munication optimizer (198) also includes computer program
instructions that when executed cause the example processor
(199) to carry out the step of generating, for each affinity
domain, a topology of the affinity domain based on the affini-
ties of the software threads to the hardware threads. The
collective communication optimizer (198) also includes com-
puter program instructions that when executed cause the
example processor (199) to carry out the step of performing,
based on the generated topologies of the affinity domains, a
collective operation on one or more software threads.

The arrangement of compute nodes, networks, and 1/O
devices making up the example parallel computer illustrated
in FIG. 1 are for explanation only, not for limitation of the
present invention. Parallel computers capable of optimizing
collective communications according to embodiments of the
present invention may include additional nodes, networks,
devices, and architectures, not shown in FIG. 1, as will occur
to those of skill in the art. For ease of explanation, the parallel
computer in the example of FIG. 1 is illustrated with only one
processor (199) in a compute node. Readers will recognize
that compute nodes in parallel computers that optimize col-
lective communications according to embodiments of the
present invention can include any number of processors as
may occur to those of skill in the art; each compute node in
IBM’s BlueGene/Q supercomputer, for example, includes 16

20

25

40

45

55

8

application processors and a management processor. The par-
allel computer (100) in the example of FIG. 1 includes sixteen
compute nodes (102); parallel computers that optimize col-
lective communications according to some embodiments of
the present invention include thousands of compute nodes. In
addition to Ethernet and JTAG, networks in such data pro-
cessing systems may support many data communications
protocols including for example TCP (Transmission Control
Protocol), IP (Internet Protocol), and others as will occur to
those of skill in the art. Various embodiments of the present
invention may be implemented on a variety of hardware plat-
forms in addition to those illustrated in FIG. 1.

Optimizing collective communications within a parallel
computer according to embodiments of the present invention
is generally implemented on a parallel computer that includes
a plurality of compute nodes. In fact, such computers may
include thousands of such compute nodes, with a compute
node typically executing at least one instance of a parallel
application. Each compute node is in turn itself a computer
composed of one or more computer processors, its own com-
puter memory, and its own input/output (‘I/O’) adapters. For
further explanation, therefore, FIG. 2 sets forth a block dia-
gram of an example compute node (152) for use in a parallel
computer that optimizes collective communications accord-
ing to embodiments of the present invention. The compute
node (152) of FIG. 2 includes one or more computer proces-
sors (164) as well as random access memory (‘RAM”) (156).
Each processor (164) can support multiple hardware compute
cores (165), and each such core can in turn support multiple
threads of execution, hardware threads of execution as well as
software threads. Each processor (164) is connected to RAM
(156) through a high-speed front side bus (161), bus adapter
(194), and a high-speed memory bus (154)—and through bus
adapter (194) and an extension bus (168) to other components
of the compute node. Stored in RAM (156) is an application
program (158) comprising a plurality of software threads
(197) having computer program instructions that carry out
parallel, user-level data processing using parallel algorithms.

Also stored RAM (156) is an application messaging mod-
ule (216), a library of computer program instructions that
carry out application-level parallel communications among
compute nodes, including point to point operations as well as
collective operations. Although the application program can
call PAMI routines directly, the application program (158)
often executes point-to-point data communications opera-
tions by calling software routines in the application messag-
ing module (216), which in turn is improved according to
embodiments of the present invention to use PAMI functions
to implement such communications. An application messag-
ing module can be developed from scratch to use a PAMI
according to embodiments of the present invention, using a
traditional programming language such as the C program-
ming language or C++, for example, and using traditional
programming methods to write parallel communications rou-
tines that send and receive data among PAMI endpoints and
compute nodes through data communications networks or
shared-memory transfers. In this approach, the application
messaging module (216) exposes a traditional interface, such
as MPI, to the application program (158) so that the applica-
tion program can gain the benefits of a PAMI with no need to
recode the application. As an alternative to coding from
scratch, therefore, existing prior art application messaging
modules may be improved to use the PAMI, existing modules
that already implement a traditional interface. Examples of
prior-art application messaging modules that can be
improved to optimizes collective communications in a paral-
lel computer according to embodiments of the present inven-

US 9,116,750 B2

9

tion include such parallel communications libraries as the
traditional ‘Message Passing Interface’ (‘MPI’) library, the
‘Parallel Virtual Machine’ (‘PVM”) library, MPICH, and the
like.

Also represented in RAM in the example of FIG. 2 is a
PAMI (218). Readers will recognize, however, that the rep-
resentation of the PAMI in RAM is a convention for ease of
explanation rather than a limitation of the present invention,
because the PAMI and its components, endpoints, clients,
contexts, and so on, have particular associations with and
inclusions of hardware data communications resources. In
fact, the PAMI can be implemented partly as software or
firmware and hardware—or even, at least in some embodi-
ments, entirely in hardware.

Also represented in RAM (156) in the example of FIG. 2 is
a collective communication optimizer (199). A collective
communication optimizer (198) includes computer program
instructions that when executed cause at least one of the
processors (164) to carry out the step of determining for each
software thread, an affinity of the software thread to a par-
ticular hardware thread. Each affinity indicates an assignment
of a software thread to a particular hardware thread. The
collective communication optimizer (198) also includes com-
puter program instructions that when executed cause at least
one of the processors (164) to carry out the step of generating
one or more affinity domains based on the affinities of the
software threads. An affinity domain indicates which soft-
ware threads are assigned to hardware threads of the same
hardware domain. A hardware domain may refer to an orga-
nizational level within a processor. Examples of a hardware
domain include a core domain, a multi-chip module (MCM)
domain, and a processor domain. The collective communica-
tion optimizer (198) also includes computer program instruc-
tions that when executed cause at least one of the processors
(164) to carry out the step of generating, for each affinity
domain, a topology of the affinity domain based on the affini-
ties of the software threads to the hardware threads. The
collective communication optimizer (198) also includes com-
puter program instructions that when executed cause at least
one of the processors (164) to carry out the step of perform-
ing, based on the generated topologies of the affinity domains,
a collective operation on one or more software threads.

In the example of FIG. 2, each processor or compute core
has uniform access to the RAM (156) on the compute node, so
that accessing a segment of shared memory is equally fast
regardless where the shared segment is located in physical
memory. In some embodiments, however, modules of physi-
cal memory are dedicated to particular processors, so that a
processor may access local memory quickly and remote
memory more slowly, a configuration referred to as a Non-
Uniform Memory Access or ‘NUMA.” In such embodiments,
asegment of shared memory can be configured locally for one
endpoint and remotely for another endpoint—or remotely
from both endpoints of a communication. From the perspec-
tive of an origin endpoint transmitting data through a segment
of shared memory that is configured remotely with respect to
the origin endpoint, transmitting data through the segment of
shared memory will appear slower that if the segment of
shared memory were configured locally with respect to the
origin endpoint—or if the segment were local to both the
origin endpoint and the target endpoint. This is the effect of
the architecture represented by the compute node (152) in the
example of FIG. 2 with all processors and all compute cores
coupled through the same bus to the RAM—that all accesses
to segments of memory shared among processes or proces-
sors on the compute node are local—and therefore very fast.

15

30

35

40

45

10

In some embodiments, the application agent is configured
to execute on one core (165) of the processors (164), while no
other application executes on the same core. In this way, a
portion of the shared memory segment (227) may be desig-
nated to that core and the application agent’s use.

Also stored in RAM (156) in the example compute node of
FIG. 2 is an operating system (162), a module of computer
program instructions and routines for an application pro-
gram’s access to other resources of the compute node. It is
possible, in some embodiments at least, for an application
program, an application messaging module, and a PAMI in a
compute node of a parallel computer to run threads of execu-
tion with no user login and no security issues because each
such thread is entitled to complete access to all resources of
the node. The quantity and complexity of duties to be per-
formed by an operating system on a compute node in a par-
allel computer therefore can be somewhat smaller and less
complex than those of an operating system on a serial com-
puter with many threads running simultaneously with various
level of authorization for access to resources. In addition,
there is no video 1/O on the compute node (152) of FIG. 2,
another factor that decreases the demands on the operating
system. The operating system may therefore be quite light-
weight by comparison with operating systems of general
purpose computers, a pared down or ‘lightweight” version as
it were, or an operating system developed specifically for
operations on a particular parallel computer. Operating sys-
tems that may be improved or simplified for use in a compute
node according to embodiments of the present invention
include UNIX™, Linux™, Microsoft XP™, AIX™, [BM’s
15/0S™ and others as will occur to those of skill in the art.

The example compute node (152) of FIG. 2 includes sev-
eral communications adapters (172,176, 180, 188) for imple-
menting data communications with other nodes of a parallel
computer. Such data communications may be carried out
serially through RS-232 connections, through external buses
such as USB, through data communications networks such as
IP networks, and in other ways as will occur to those of skill
in the art. Communications adapters implement the hardware
level of data communications through which one computer
sends data communications to another computer, directly or
through a network. Examples of communications adapters
foruse in computers that optimize collective communications
according to embodiments of the present invention include
modems for wired communications, Ethernet (IEEE 802.3)
adapters for wired network communications, and 802.11b
adapters for wireless network communications.

The data communications adapters in the example of FIG.
2 include a Gigabit Ethernet adapter (172) that couples
example compute node (152) for data communications to a
Gigabit Ethernet (174). Gigabit Ethernet is a network trans-
mission standard, defined in the IEEE 802.3 standard, that
provides a data rate of 1 billion bits per second (one gigabit).
Gigabit Ethernet is a variant of Ethernet that operates over
multimode fiber optic cable, single mode fiber optic cable, or
unshielded twisted pair.

The data communications adapters in the example of FIG.
2 includes a JTAG Slave circuit (176) that couples example
compute node (152) for data communications to a JTAG
Master circuit (178). JTAG is the usual name for the IEEE
1149.1 standard entitled Standard Test Access Port and
Boundary-Scan Architecture for test access ports used for
testing printed circuit boards using boundary scan. JTAG is so
widely adapted that, at this time, boundary scan is more or
less synonymous with JTAG. JTAG is used not only for
printed circuit boards, but also for conducting boundary scans
of integrated circuits, and is also used as a mechanism for

US 9,116,750 B2

11

debugging embedded systems. The example compute node of
FIG. 2 may be all three of these: It typically includes one or
more integrated circuits installed on a printed circuit board
and may be implemented as an embedded system having its
own processor, its own memory, and its own 1/O capability.
JTAG boundary scans through JTAG Slave (176) may effi-
ciently configure processor registers and memory in compute
node (152) for use in optimizing collective communications
according to embodiments of the present invention.

The data communications adapters in the example of FIG.
2 includes a Point To Point Adapter (180) that couples
example compute node (152) for data communications to a
data communications network (108) that is optimal for point
to point message passing operations such as, for example, a
network configured as a three-dimensional torus or mesh.
Point To Point Adapter (180) provides data communications
in six directions on three communications axes, X, y, and z,
through six bidirectional links: +x (181), -x (182), +y (183),
-y (184), +7 (185), and -z (186). For ease of explanation, the
Point To Point Adapter (180) of FIG. 2 as illustrated is con-
figured for data communications in three dimensions, X, v,
and z, but readers will recognize that Point To Point Adapters
optimized for point-to-point operations in a parallel computer
that optimizes collective communications according to
embodiments of the present invention may in fact be imple-
mented so as to support communications in two dimensions,
four dimensions, five dimensions, and so on.

The data communications adapters in the example of FIG.
2 includes a Collective Operations Adapter (188) that couples
example compute node (152) for data communications to a
network (106) that is optimal for collective message passing
operations such as, for example, a network configured as a
binary tree. Collective Operations Adapter (188) provides
data communications through three bidirectional links: two to
children nodes (190) and one to a parent node (192).

The example compute node (152) includes a number of
arithmetic logic units (‘ALUs’). ALUs (166) are components
of'processors (164), and a separate ALU (170) is dedicated to
the exclusive use of collective operations adapter (188) for
use in performing the arithmetic and logical functions of
reduction operations. Computer program instructions of a
reduction routine in an application messaging module (216)
or a PAMI (218) may latch an instruction for an arithmetic or
logical function into instruction register (169). When the
arithmetic or logical function of a reduction operation is a
‘sum’ or a ‘logical OR,” for example, collective operations
adapter (188) may execute the arithmetic or logical operation
by use of an ALU (166) in a processor (164) or, typically
much faster, by use of the dedicated ALU (170).

The example compute node (152) of FIG. 2 includes a
direct memory access (‘DMA”) controller (225), a module of
automated computing machinery that implements, through
communications with other DMA engines on other compute
nodes, or on a same compute node, direct memory access to
and from memory on its own compute node as well as
memory on other compute nodes. Direct memory access is a
way of reading and writing to and from memory of compute
nodes with reduced operational burden on computer proces-
sors (164); a CPU initiates a DMA transfer, but the CPU does
not execute the DMA transfer. A DMA transfer essentially
copies a block of memory from one compute node to another,
or between RAM segments of applications on the same com-
pute node, from an origin to a target for a PUT operation, from
a target to an origin for a GET operation.

For further explanation, FIG. 3A illustrates an example of
a Point To Point Adapter (180) useful in parallel computers
that optimize collective communications according to

10

15

20

25

30

35

40

45

50

55

60

12

embodiments of the present invention. Point To Point Adapter
(180) is designed for use in a data communications network
optimized for point to point operations, a network that orga-
nizes compute nodes in a three-dimensional torus or mesh.
Point To Point Adapter (180) in the example of FIG. 3A
provides data communication along an x-axis through four
unidirectional data communications links, to and from the
next node in the —x direction (182) and to and from the next
node in the +x direction (181). Point To Point Adapter (180)
also provides data communication along a y-axis through
four unidirectional data communications links, to and from
the next node in the -y direction (184) and to and from the
next node in the +y direction (183). Point To Point Adapter
(180) in also provides data communication along a z-axis
through four unidirectional data communications links, to
and from the next node in the -z direction (186) and to and
from the next node in the +z direction (185). For ease of
explanation, the Point To Point Adapter (180) of FIG. 3A as
illustrated is configured for data communications in only
three dimensions, X, y, and z, but readers will recognize that
Point To Point Adapters optimized for point-to-point opera-
tions in a parallel computer that optimizes collective commu-
nications according to embodiments of the present invention
may in fact be implemented so as to support communications
in two dimensions, four dimensions, five dimensions, and so
on. Several supercomputers now use five dimensional mesh
or torus networks, including, for example, IBM’s Blue Gene
Q™.

For further explanation, FIG. 3B illustrates an example of
a Collective Operations Adapter (188) useful in a parallel
computer that optimizes collective communications accord-
ing to embodiments of the present invention. Collective
Operations Adapter (188) is designed for use in a network
optimized for collective operations, a network that organizes
compute nodes of a parallel computer in a binary tree. Col-
lective Operations Adapter (188) in the example of FIG. 3B
provides data communication to and from two children nodes
through four unidirectional data communications links (190).
Collective Operations Adapter (188) also provides data com-
munication to and from a parent node through two unidirec-
tional data communications links (192).

For further explanation, FIG. 4 sets forth a line drawing
illustrating an example data communications network (108)
optimized for point-to-point operations useful in parallel
computers that optimize collective communications accord-
ing to embodiments of the present invention. In the example
of FIG. 4, dots represent compute nodes (102) of a parallel
computer, and the dotted lines between the dots represent data
communications links (103) between compute nodes. The
data communications links are implemented with point-to-
point data communications adapters similar to the one illus-
trated for example in FIG. 3A, with data communications
links on three axis, X, y, and z, and to and fro in six directions
+x (181), —x (182), +v (183), —y (184), +z (185), and -z (186).
The links and compute nodes are organized by this data
communications network optimized for point-to-point opera-
tions into a three dimensional mesh (105). The mesh (105) has
wrap-around links on each axis that connect the outermost
compute nodes in the mesh (105) on opposite sides of the
mesh (105). These wrap-around links form a torus (107).
Each compute node in the torus has a location in the torus that
is uniquely specified by a set of X, y, Z coordinates. Readers
will note that the wrap-around links in the y and z directions
have been omitted for clarity, but are configured in a similar
manner to the wrap-around link illustrated in the x direction.
For clarity of explanation, the data communications network
of FIG. 4 is illustrated with only 27 compute nodes, but

US 9,116,750 B2

13

readers will recognize that a data communications network
optimized for point-to-point operations in a parallel computer
that optimizes collective communications according to
embodiments of the present invention may contain only a few
compute nodes or may contain thousands of compute nodes.
For ease of explanation, the data communications network of
FIG. 4 is illustrated with only three dimensions: X, y, and z,
but readers will recognize that a data communications net-
work optimized for point-to-point operations may in fact be
implemented in two dimensions, four dimensions, five
dimensions, and so on. As mentioned, several supercomput-
ers now use five dimensional mesh or torus networks, includ-
ing IBM’s Blue Gene Q™.

For further explanation, FIG. 5 illustrates an example data
communications network (106) optimized for collective
operations by organizing compute nodes in a tree. The
example data communications network of FIG. 5 includes
data communications links connected to the compute nodes
s0 as to organize the compute nodes as a tree. In the example
of FIG. 5, dots represent compute nodes (102) of a parallel
computer, and the dotted lines (103) between the dots repre-
sent data communications links between compute nodes. The
data communications links are implemented with collective
operations data communications adapters similar to the one
illustrated for example in FIG. 3B, with each node typically
providing data communications to and from two children
nodes and data communications to and from a parent node,
with some exceptions. Nodes in a binary tree may be charac-
terized as a root node (202), branch nodes (204), and leaf
nodes (206). The root node (202) has two children but no
parent. The leaf nodes (206) each has a parent, but leaf nodes
have no children. The branch nodes (204) each has both a
parent and two children. The links and compute nodes are
thereby organized by this data communications network opti-
mized for collective operations into a binary tree (106). For
clarity of explanation, the data communications network of
FIG. 5 is illustrated with only 31 compute nodes, but readers
will recognize that a data communications network optimized
for collective operations for use in parallel computers that
optimize collective communications according to embodi-
ments of the present invention may contain only a few com-
pute nodes or hundreds or thousands of compute nodes.

In the example of FIG. 5, each node in the tree is assigned
aunit identifier referred to as a ‘rank’ (196). The rank actually
identifies an instance of a parallel application that is executing
on a compute node. That is, the rank is an application-level
identifier. Using the rank to identify a node assumes that only
one such instance of an application is executing on each node.
A compute node can, however, support multiple processors,
each of which can support multiple processing cores—so that
more than one process or instance of an application can easily
be present under execution on any given compute node—orin
all the compute nodes, for that matter. To the extent that more
than one instance of an application executes on a single com-
pute node, the rank identifies the instance of the application as
such rather than the compute node. A rank uniquely identifies
an application’s location in the tree network for use in both
point-to-point and collective operations in the tree network.
The ranks in this example are assigned as integers beginning
with ‘0’ assigned to the root instance or root node (202), ‘1’
assigned to the first node in the second layer of the tree, ‘2’
assigned to the second node in the second layer of the tree, ‘3’
assigned to the first node in the third layer of the tree, ‘4’
assigned to the second node in the third layer of the tree, and
so on. For ease of illustration, only the ranks of the first three
layers of the tree are shown here, but all compute nodes, or
rather all application instances, in the tree network are

10

15

20

25

30

35

40

45

50

55

60

65

14

assigned a unique rank. Such rank values can also be assigned
as identifiers of application instances as organized in a mesh
or torus network.

For further explanation, FIG. 6 sets forth a block diagram
of'an example protocol stack useful in parallel computers that
optimize collective communications according to embodi-
ments of the present invention. The example protocol stack of
FIG. 6 includes a hardware layer (214), a system messaging
layer (212), an application messaging layer (210), and an
application layer (208). For ease of explanation, the protocol
layers in the example stack of FIG. 6 are shown connecting an
origin compute node (222) and a target compute node (224),
although it is worthwhile to point out that in embodiments
that effect DMA data transfers, the origin compute node and
the target compute node can be the same compute node. The
granularity of connection through the system messaging layer
(212), which is implemented with a PAMI (218), is finer than
merely compute node to compute node—because, again,
communications among endpoints often is communications
among endpoints on the same compute node. For further
explanation, recall that the PAMI (218) connects endpoints,
connections specified by combinations of clients, contexts,
and tasks, each such combination being specific to a thread of
execution on a compute node, with each compute node
capable of supporting many threads and therefore many end-
points. Every endpoint typically can function as both an ori-
gin endpoint or a target endpoint for data transfers through a
PAMI, and both the origin endpoint and its target endpoint
can be located on the same compute node. So an origin
compute node (222) and its target compute node (224) can in
fact, and often will, be the same compute node.

The application layer (208) provides communications
among instances of a parallel application (158) running on the
compute nodes (222, 224) by invoking functions in an appli-
cation messaging module (216) installed on each compute
node. Communications among instances of the application
through messages passed between the instances of the appli-
cation. Applications may communicate messages invoking
function of an application programming interface (‘APT’)
exposed by the application messaging module (216). In this
approach, the application messaging module (216) exposes a
traditional interface, such as an API of an MPI library, to the
application program (158) so that the application program
can gain the benefits of a PAMI, reduced network traffic,
callback functions, and so on, with no need to recode the
application. Alternatively, if the parallel application is pro-
grammed to use PAMI functions, the application can call the
PAMI functions directly, without going through the applica-
tion messaging module.

The example protocol stack of FIG. 6 includes a system
messaging layer (212) implemented here as a PAMI (218).
The PAMI provides system-level data communications func-
tions that support messaging in the application layer (602)
and the application messaging layer (610). Such system-level
functions are typically invoked through an APl exposed to the
application messaging modules (216) in the application mes-
saging layer (210). Although developers can in fact access a
PAMI API directly by coding an application to do so, a
PAMTI’s system-level functions in the system messaging layer
(212) in many embodiments are isolated from the application
layer (208) by the application messaging layer (210), making
the application layer somewhat independent of system spe-
cific details. With an application messaging module present-
ing a standard MPI API to an application, for example, with
the application messaging module retooled to use the PAMI
to carry out the low-level messaging functions, the applica-
tion gains the benefits of a PAMI with no need to incur the

US 9,116,750 B2

15

expense of reprogramming the application to call the PAMI
directly. Because, however, some applications will in fact be
reprogrammed to call the PAMI directly, all entities in the
protocol stack above the PAMI are viewed by PAMI as appli-
cations. When PAMI functions are invoked by entities above
the PAMI in the stack, the PAMI makes no distinction
whether the caller is in the application layer or the application
messaging layer, no distinction whether the caller is an appli-
cation as such or an MPI library function invoked by an
application. As far as the PAMI is concerned, any caller of a
PAMI function is an application.

The protocol stack of FIG. 6 includes a hardware layer
(634) that defines the physical implementation and the elec-
trical implementation of aspects of the hardware on the com-
pute nodes such as the bus, network cabling, connector types,
physical data rates, data transmission encoding and many
other factors for communications between the compute nodes
(222) on the physical network medium. In parallel computers
that optimize collective communications according to
embodiments of the present invention, the hardware layer
includes DMA controllers and network links, including rout-
ers, packet switches, and the like.

For further explanation, FIG. 7 sets forth a functional block
diagram of an example PAMI (218) for use in parallel com-
puters that optimize collective communications according to
embodiments of the present invention. The PAMI (218) pro-
vides an active messaging layer that supports both point to
point communications in a mesh or torus as well as collective
operations, gathers, reductions, barriers, and the like in tree
networks, for example. The PAMI is a multithreaded parallel
communications engine designed to provide low level mes-
sage passing functions, many of which are one-sided, and
abstract such functions for higher level messaging middle-
ware, referred to in this specification as ‘application messag-
ing modules’ in an application messaging layer. In the
example of FIG. 7, the application messaging layer is repre-
sented by a generic MPI module (258), appropriate for ease of
explanation because some form of MPI is a de facto standard
for such messaging middleware. Compute nodes and com-
munications endpoints of a parallel computer (102 on FIG. 1)
are coupled for data communications through such a PAMI
and through data communications resources (294, 296, 314)
that include DMA controllers, network adapters, and data
communications networks through which controllers and
adapters deliver data communications. The PAMI (218) pro-
vides data communications among data communications
endpoints, where each endpoint is specified by data commu-
nications parameters for a thread of execution on a compute
node, including specifications of a client, a context, and a
task.

The PAMI (218) in this example includes PAMI clients
(302, 304), tasks (286, 298), contexts (190, 292, 310, 312),
and endpoints (288, 300). A PAMI client is a collection of data
communications resources (294, 295, 314) dedicated to the
exclusive use of an application-level data processing entity,
an application or an application messaging module such as an
MPI library. Data communications resources assigned in col-
lections to PAMI clients are explained in more detail below
with reference to FIGS. 8A and 8B. PAMI clients (203, 304
on FIG. 7) enable higher level middleware, application mes-
saging modules, MPI libraries, and the like, to be developed
independently so that each can be used concurrently by an
application. Although the application messaging layer in FIG.
7 is represented for example by a single generic MPI module
(258), in fact, a PAMI, operating multiple clients, can support
multiple message passing libraries or application messaging
modules simultaneously, a fact that is explained in more

10

15

20

25

30

35

40

45

50

55

60

65

16

detail with reference to FIG. 9. FIG. 9 sets forth a functional
block diagram of an example PAMI (218) useful in parallel
computers that optimize collective communications accord-
ing to embodiments of the present invention in which the
example PAMI operates, on behalf of an application (158),
with multiple application messaging modules (502-510)
simultaneously. The application (158) can have multiple mes-
sages in transit simultaneously through each of the applica-
tion messaging modules (502-510). Each context (512-520)
carries out, through post and advance functions, data commu-
nications for the application on data communications
resources in the exclusive possession, in each client, of that
context. Each context carries out datacommunications opera-
tions independently and in parallel with other contexts in the
same or other clients. In the example FIG. 9, each client
(532-540) includes a collection of data communications
resources (522-530) dedicated to the exclusive use of an
application-level data processing entity, one of the applica-
tion messaging modules (502-510):

IBM MPI Library (502) operates through context (512)
data communications resources (522) dedicated to the
use of PAMI client (532),

MPICH Library (504) operates through context (514) data
communications resources (524) dedicated to the use of
PAMI client (534),

Unified Parallel C (“UPC”) Library (506) operates through
context (516) data communications resources (526)
dedicated to the use of PAMI client (536),

Partitioned Global Access Space (‘PGAS’) Runtime
Library (508) operates through context (518) data com-
munications resources (528) dedicated to the use of
PAMI client (538), and

Aggregate Remote Memory Copy Interface ((ARMCI’)
Library (510) operates through context (520) data com-
munications resources (530) dedicated to the use of
PAMI client (540).

Again referring to the example of FIG. 7: The PAMI (218)
includes tasks, listed in task lists (286, 298) and identified
(250) to the application (158). A ‘task’ as the term is used in
PAMI operations is a platform-defined integer datatype that
identifies a canonical application process, an instance of a
parallel application (158). Very carefully in this specification,
the term ‘task’ is always used to refer only to this PAMI
structure, not the traditional use of the computer term ‘task’ to
refer to a process or thread of execution. In this specification,
the term ‘process’ refers to a canonical data processing pro-
cess, a container for threads in a multithreading environment.
In particular in the example of FIG. 7, the application (158) is
implemented as a canonical process with multiple threads
(251-254) assigned various duties by a leading thread (251)
which itself executes an instance of a parallel application
program. Each instance of a parallel application is assigned a
task; each task so assigned can be an integer value, for
example, in a C environment, or a separate task object in a
C++ or Java environment. The tasks are components of com-
munications endpoints, but are not themselves communica-
tions endpoints; tasks are not addressed directly for data
communications in PAMI. This gives a finer grained control
than was available in prior message passing art. Each client
has its own list (286, 298) of tasks for which its contexts
provide services; this allows each process to potentially
reside simultaneously in two or more different communica-
tions domains as will be the case in certain advanced com-
puters using, for example, one type of processor and network
in one domain and a completely different processor type and
network in another domain, all in the same computer.

US 9,116,750 B2

17

The PAMI (218) includes contexts (290, 292, 310, 312). A
‘context’ as the term is used in PAMI operations is composed
of a subset of a client’s collection of data processing
resources, context functions, and a work queue of data trans-
fer instructions to be performed by use of the subset through
the context functions operated by an assigned thread of
execution. That is, a context represents a partition of the local
data communications resources assigned to a PAMI client.
Every context within a client has equivalent functionality and
semantics. Context functions implement contexts as thread-
ing points that applications use to optimize concurrent com-
munications. Communications initiated by a local process, an
instance of a parallel application, uses a context object to
identify the specific threading point that will be used to issue
a particular communication independent of communications
occurring in other contexts. In the example of FIG. 7, where
the application (158) and the application messaging module
(258) are both implemented as canonical processes with mul-
tiple threads of execution, each has assigned or mapped par-
ticular threads (253,254, 262, 264) to advance (268, 270, 276,
278) work on the contexts (290, 292, 310, 312), including
execution of local callbacks (272, 280). In particular, the local
event callback functions (272, 280) associated with any par-
ticular communication are invoked by the thread advancing
the context that was used to initiate the communication opera-
tion in the first place. Like PAMI tasks, contexts are not used
to directly address a communication destination or target, as
they are a local resource.

Context functions, explained here with regard to references
(472-482) on FIG. 9, include functions to create (472) and
destroy (474) contexts, functions to lock (476) and unlock
(478) access to a context, and functions to post (480) and
advance (480) work in a context. For ease of explanation, the
context functions (472-482) are illustrated in only one
expanded context (512); readers will understand, however,
that all PAMI contexts have similar context functions. The
create (472) and destroy (474) functions are, in an object-
oriented sense, constructors and destructors. In the example
embodiments described in this specifications, post (480) and
advance (482) functions on a context are critical sections, not
thread safe. Applications using such non-reentrant functions
must somehow ensure that critical sections are protected from
re-entrant use. Applications can use mutual exclusion locks to
protect critical sections. The lock (476) and unlock (478)
functions in the example of FIG. 9 provide and operate such
a mutual exclusion lock to protect the critical sections in the
post (480) and advance (482) functions. If only a single thread
posts or advances work on a context, then that thread need
never lock that context. To the extent that progress is driven
independently on a context by a single thread of execution,
then no mutual exclusion locking of the context itself is
required—yprovided that no other thread ever attempts to call
afunction on such a context. If more than one thread will post
or advance work on a context, each such thread must secure a
lock before calling a post or an advance function on that
context. This is one reason why it is probably a preferred
architecture, given sufficient resources, to assign one thread
to operate each context. Progress can be driven with advance
(482) functions concurrently among multiple contexts by
using multiple threads, as desired by an application—shown
in the example of FIG. 7 by threads (253, 254, 262, 264)
which advance work concurrently, independently and in par-
allel, on contexts (290, 292, 310, 312).

Posts and advances (480, 482 on FIG. 9) are functions
called on a context, either in a C-type function with a context
1D as a parameter, or in object oriented practice where the
calling entity possesses a reference to a context or a context

10

15

20

25

30

35

40

45

50

55

60

65

18

object as such and the posts and advances are member meth-
ods of a context object. Again referring to FIG. 7: Applica-
tion-level entities, application programs (158) and applica-
tion messaging modules (258), post (266, 274) data
communications instructions, including SENDs,
RECEIVEs, PUTs, GETs, and so on, to the work queues (282,
284, 306, 308) in contexts and then call advance functions
(268,270, 276, 278) on the contexts to progress specific data
processing and data communications that carry out the
instructions. The data processing and data communications
effected by the advance functions include specific messages,
request to send (‘RTS’) messages, acknowledgments, call-
back execution, transfers of transfer data or payload data, and
so on. Advance functions therefore operate generally by
checking a work queue for any new instructions that need to
be initiated and checking data communications resources for
any incoming message traffic that needs to be administered as
well as increases in storage space available for outgoing mes-
sage traffic, with callbacks and the like. Advance functions
also carry out or trigger transfers of transfer data or payload
data.

In at least some embodiments, a context’s subset of a
client’s data processing resources is dedicated to the exclu-
sive use of the context. In the example of FIG. 7, context (290)
has a subset (294) of a client’s (302) data processing
resources dedicated to the exclusive use of the context (290),
and context (292) has a subset (296) of a client’s (302) data
processing resources dedicated to the exclusive use of the
context (292). Advance functions (268, 270) called on con-
texts (290, 292) therefore never need to secure alock on a data
communications resource before progressing work on a con-
text—because each context (290, 292) has exclusive use of
dedicated data communications resources. Usage of data
communications resources in this example PAMI (218), how-
ever, is not thread-safe. When data communications resources
are shared among contexts, mutual exclusion locks are
needed. In contrast to the exclusive usage of resources by
contexts (290, 292), contexts (310, 312) share access to their
client’s data communications resource (314) and therefore do
not have data communications resources dedicated to exclu-
sive use of a single context. Contexts (310, 312) therefore
always must secure a mutual exclusion lock on a data com-
munications resource before using the resource to send or
receive administrative messages or transfer data.

For further explanation, here is an example pseudocode
Hello World program for an application using a PAMI:

int main(int arge, char ** argv)
{
PAMI_ client__t client;
PAMI_ context t context;
PAMI_ result_t status = PAMI__ERROR;
const char *name = “PAMI”;
status = PAMI__Client__initialize(name, &client);
size_t_n=1;
status = PAMI__Context_ createv(client, NULL, 0, &context, _n);
PAMI_ configuration_ t configuration;
configuration.name = PAMI_ TASK_ ID;
status = PAMI__Configuration_ query(client, &configuration);
size_t task_ id = configuration.value.intval;
configuration.name = PAMI_ NUM_ TASKS;
status = PAMI__Configuration_ query(client, &configuration);
size_t num__tasks = configuration.value.intval;
fprintf (stderr, “Hello process %d of %d\n”, task_ id, num__tasks);
status = PAMI__Context_destroy(context);
status = PAMI__Client_ finalize(client);
return O;

US 9,116,750 B2

19

This short program is termed ‘pseudocode’ because it is an
explanation in the form of computer code, not a working
model, not an actual program for execution. In this
pseudocode example, an application initializes a client and a
context for an application named “PAMI.” PAMI_Client_ini-
tialize and PAMI_Context_createv are initialization func-
tions (316) exposed to applications as part of a PAMI’s APIL.
These functions, in dependence upon the application name
“PAMLI,” pull from a PAMI configuration (318) the informa-
tion needed to establish a client and a context for the appli-
cation. The application uses this segment:

PAMI_ configuration_ t configuration;

configuration.name = PAMI_TASK_ ID;

status = PAMI__Configuration_ query(client, &configuration);
size_t task_ id = configuration.value.intval;

to retrieve its task ID and this segment:

configuration.name = PAMI_ NUM_ TASKS;
status = PAMI__Configuration_ query(client, &configuration);
size_t num__tasks = configuration.value.intval;

to retrieve the number of tasks presently configured to carry
out parallel communications and process data communica-
tions event in the PAMI. The applications prints “Hello pro-
cesstask_id of num_tasks,” where task_id is the task ID of the
subject instance of a parallel application, and num_tasks is
the number of instances of the application executing in par-
allel on compute nodes. Finally, the application destroys the
context and terminates the client.

For further explanation of data communications resources
assigned in collections to PAMI clients, FIG. 8A sets forth a
block diagram of example data communications resources
(220) useful in parallel computers that optimize collective
communications according to embodiments of the present
invention. The data communications resources of FIG. 8A
include a gigabit Ethernet adapter (238), an Infiniband
adapter (240), a Fibre Channel adapter (242), a PCI Express
adapter (246), a collective operations network configured as a
tree (106), shared memory (227), DMA controllers (225,
226), and a network (108) configured as a point-to-point torus
or mesh like the network described above with reference to
FIG. 4. A PAMI is configured with clients, each of which is in
turn configured with certain collections of such data commu-
nications resources—so that, for example, the PAMI client
(302) in the PAMI (218) in the example of FIG. 7 can have
dedicated to its use a collection of data communications
resources composed of six segments (227) of shared memory,
six Gigabit Ethernet adapters (238), and six Infiniband adapt-
ers (240). And the PAMI client (304) can have dedicated to its
use six Fibre Channel adapters (242), a DMA controller
(225), a torus network (108), and five segments (227) of
shared memory. And so on.

The DMA controllers (225, 226) in the example of FIG. 8A
each is configured with DMA control logic in the form of a
DMA engine (228, 229), an injection FIFO buffer (230), and
areceive FIFObuffer (232). The DMA engines (228,229) can
be implemented as hardware components, logic networks of
a DMA controller, in firmware, as software operating an
embedded controller, as various combinations of software,
firmware, or hardware, and so on. Each DMA engine (228,
229) operates on behalf of endpoints to send and receive
DMA transfer data through the network (108). The DMA
engines (228, 229) operate the injection buffers (230, 232) by

15

20

25

30

40

45

55

20

processing first-in-first-out descriptors (234, 236) in the buff-
ers, hence the designation ‘injection FIFO’ and ‘receive
FIFO.

For further explanation, here is an example use case, a
description of the overall operation of an example PUT DMA
transfer using the DMA controllers (225, 226) and network
(108) in the example of FIG. 8A: An originating application
(158), which is typically one instance of a parallel application
running on a compute node, places a quantity of transfer data
(494) at a location in its RAM (155). The application (158)
then calls a post function (480) on a context (512) of an origin
endpoint (352), posting a PUT instruction (390) into a work
queue (282) of the context (512); the PUT instruction (390)
specifies a target endpoint (354) to which the transfer data is
to be sent as well as source and destination memory locations.
The application then calls an advance function (482) on the
context (512). The advance function (482) finds the new PUT
instruction in its work queue (282) and inserts a data descrip-
tor (234) into the injection FIFO of'the origin DMA controller
(225); the data descriptor includes the source and destination
memory locations and the specification of the target endpoint.
The origin DMA engine (225) then transfers the data descrip-
tor (234) as well as the transfer data (494) through the net-
work (108) to the DMA controller (226) on the target side of
the transaction. The target DM A engine (229), upon receiving
the data descriptor and the transfer data, places the transfer
data (494) into the RAM (156) of the target application at the
location specified in the data descriptor and inserts into the
target DMA controller’s receive FIFO (232) a data descriptor
(236) that specifies the target endpoint and the location of the
transfer data (494) in RAM (156). The target application
(159) or application instance calls an advance function (483)
on a context (513) of the target endpoint (354). The advance
function (483) checks the communications resources
assigned to its context (513) for incoming messages, includ-
ing checking the receive FIFO (232) of the target DMA con-
troller (226) for data descriptors that specify the target end-
point (354). The advance function (483) finds the data
descriptor for the PUT transfer and advises the target appli-
cation (159) that its transfer data has arrived. A GET-type
DMA transfer works in a similar manner, with some differ-
ences, including, of course, the fact that transfer data flows in
the opposite direction. Similarly, typical SEND transfers also
operate similarly, some with rendezvous protocols, some
with eager protocols, with data transmitted in packets over the
a network through non-DMA network adapters or through
DMA controllers.

The example of FIG. 8A includes two DMA controllers
(225, 226). DMA transfers between endpoints on separate
compute nodes use two DMA controllers, one on each com-
pute node. Compute nodes can be implemented with multiple
DMA controllers so that many or even all DMA transfers
even among endpoints on a same compute node can be carried
out using two DMA engines. In some embodiments at least,
however, a compute node, like the example compute node
(152) of FIG. 2, has only one DMA engine, so that that DMA
engine can be use to conduct both sides of transfers between
endpoints on that compute node. For further explanation of
this fact, FIG. 8B sets forth a functional block diagram of an
example DMA controller (225) operatively coupled to a net-
work (108)—in an architecture where this DMA controller
(225) is the only DMA controller on a compute node—and an
origin endpoint (352) and its target endpoint (354) are both
located on the same compute node (152). In the example of
FIG. 8B, a single DMA engine (228) operates with two
threads of execution (502, 504) on behalf of endpoints (352,
354) on a same compute node to send and receive DMA

US 9,116,750 B2

21

transfer data through a segment (227) of shared memory. A
transmit thread (502) injects transfer data into the network
(108) as specified in data descriptors (234) in an injection
FIFO bufter (230), and a receive thread (502) receives trans-
fer data from the network (108) as specified in data descrip-
tors (236) in a receive FIFO buffer (232).

The overall operation of an example PUT DMA transfer
with the DMA controllers (225) and the network (108) in the
example of FIG. 8B is: An originating application (158), that
is actually one of multiple instances (158, 159) of a parallel
application running on a compute node (152) in separate
threads of execution, places a quantity of transfer data (494)
at a location in its RAM (155). The application (158) then
calls a post function (480) on a context (512) of an origin
endpoint (352), posting a PUT instruction (390) into a work
queue (282) of the context (512); the PUT instruction speci-
fies a target endpoint (354) to which the transfer data is to be
sent as well as source and destination memory locations. The
application (158) then calls an advance function (482) on the
context (512). The advance function (482) finds the new PUT
instruction (390) in its work queue (282) and inserts a data
descriptor (234) into the injection FIFO of the DMA control-
ler (225); the data descriptor includes the source and destina-
tion memory locations and the specification of the target
endpoint. The DMA engine (225) then transfers by its trans-
mit and receive threads (502, 504) through the network (108)
the data descriptor (234) as well as the transfer data (494). The
DMA engine (228), upon receiving by its receive thread (504)
the data descriptor and the transfer data, places the transfer
data (494) into the RAM (156) of the target application and
inserts into the DMA controller’s receive FIFO (232) a data
descriptor (236) that specifies the target endpoint and the
location of the transfer data (494) in RAM (156). The target
application (159) calls an advance function (483) on a context
(513) of the target endpoint (354). The advance function
(483) checks the communications resources assigned to its
context for incoming messages, including checking the
receive FIFO (232) of the DMA controller (225) for data
descriptors that specify the target endpoint (354). The
advance function (483) finds the data descriptor for the PUT
transfer and advises the target application (159) that its trans-
fer data has arrived. Again, a GET-type DMA transfer works
in a similar manner, with some differences, including, of
course, the fact that transfer data flows in the opposite direc-
tion. And typical SEND transfers also operate similarly, some
with rendezvous protocols, some with eager protocols, with
data transmitted in packets over the a network through non-
DMA network adapters or through DMA controllers.

By use of an architecture like that illustrated and described
with reference to FIG. 8B, a parallel application or an appli-
cation messaging module that is already programmed to use
DMA transfers can gain the benefit of the speed of DMA data
transfers among endpoints on the same compute node with no
need to reprogram the applications or the application mes-
saging modules to use the network in other modes. In this
way, an application or an application messaging module,
already programmed for DMA, can use the same DMA calls
through a same API for DMA regardless whether subject
endpoints are on the same compute node or on separate com-
pute nodes.

For further explanation, FIG. 10 sets forth a functional
block diagram of example endpoints useful in parallel com-
puters that optimize collective communications according to
embodiments of the present invention. In the example of FIG.
10, a PAMI (218) is implemented with instances on two
separate compute nodes (152, 153) that include four end-
points (338, 340, 342, 344). These endpoints are opaque

10

15

20

25

30

35

40

45

50

55

60

65

22

objects used to address an origin or destination in a process
and are constructed from a (client, task, context) tuple. Non-
DMA SEND and RECEIVE instructions as well as DMA
instructions such as PUT and GET address a destination by
use of an endpoint object or endpoint identifier.

Each endpoint (338, 340, 342, 344) in the example of FIG.
10 is composed of a client (302, 303, 304, 305), a task (332,
333, 334, 335), and a context (290, 292, 310, 312). Using a
client a component in the specification of an endpoint disam-
biguates the task and context identifiers, as these identifiers
may be the same for multiple clients. A task is used as a
component in the specification of an endpoint to construct an
endpoint to address a process accessible through a context. A
context in the specification of'an endpoint identifies, refers to,
or represents the specific context associated with a destina-
tion or target task—because the context identifies a specific
threading point on a task. A context offset identifies which
threading point is to process a particular communications
operation. Endpoints enable “crosstalk” which is the act of
issuing communication on a local context with a particular
context offset that is directed to a destination endpoint with no
correspondence to a source context or source context offset.

For efficient utilization of storage in an environment where
multiple tasks of a client reside on the same physical compute
node, an application may choose to write an endpoint table
(288, 300 on FIG. 7) in a segment of shared memory (227,
346, 348). It is the responsibility of the application to allocate
such segments of shared memory and coordinate the initial-
ization and access of any data structures shared between
processes. This includes any endpoint objects which are cre-
ated by one process or instance of an application and read by
another process.

Endpoints (342, 344) on compute node (153) serve respec-
tively two application instances (157, 159). The tasks (334,
336) in endpoints (342, 344) are different. The task (334) in
endpoint (342) is identified by the task ID (249) of application
(157), and the task (336) in endpoint (344) is identified by the
task ID (257) of application (159). The clients (304, 305) in
endpoints (342, 344) are different, separate clients. Client
(304) in endpoint (342) associates data communications
resources (e.g., 294, 296, 314 on FIG. 7) dedicated exclu-
sively to the use of application (157), while client (305) in
endpoint (344) associates data communications resources
dedicated exclusively to the use of application (159). Con-
texts (310, 312) in endpoints (342, 344) are different, separate
contexts. Context (310) in endpoint (342) operates on behalf
of application (157) a subset of the data communications
resources of client (304), and context (312) in endpoint (344)
operates on behalf of application (159) a subset of the data
communications resources of client (305).

Contrasted with the PAMIs (218) on compute node (153),
the PAMI (218) on compute node (152) serves only one
instance of a parallel application (158) with two endpoints
(338, 340). The tasks (332, 333) in endpoints (338, 340) are
the same, because they both represent a same instance of a
same application (158); both tasks (332,333) therefore are
identified, either with a same variable value, references to a
same object, or the like, by the task ID (250) of application
(158). The clients (302, 303) in endpoints (338, 340) are
optionally either different, separate clients or the same client.
If they are different, each associates a separate collection of
data communications resources. If they are the same, then
each client (302, 303) in the PAMI (218) on compute node
(152) associates a same set of data communications resources
and is identified with a same value, object reference, or the
like. Contexts (290, 292) in endpoints (338, 340) are difter-
ent, separate contexts. Context (290) in endpoint (338) oper-

US 9,116,750 B2

23

ates on behalf of application (158) a subset of the data com-
munications resources of client (302) regardless whether
clients (302, 303) are the same client or different clients, and
context (292) in endpoint (340) operates on behalf of appli-
cation (158) a subset of the data communications resources of
client (303) regardless whether clients (302, 303) are the
same client or different clients. Thus the tasks (332, 333) are
the same; the clients (302, 303) can be the same; and the
endpoints (338, 340) are distinguished at least by different
contexts (290, 292), each of which operates on behalf of one
of'the threads (251-254) of application (158), identified typi-
cally by a context offset or a threading point.

Endpoints (338, 340) being as they are on the same com-
pute node (152) can effect DMA data transfers between end-
points (338, 340) through DMA controller (225) and a seg-
ment of shared local memory (227). In the absence of such
shared memory (227), endpoints (338, 340) can effect DMA
data transfers through the DMA controller (225) and the
network (108), even though both endpoints (338, 340) are on
the same compute node (152). DMA transfers between end-
point (340) on compute node (152) and endpoint (344) on
another compute node (153) go through DMA controllers
(225, 226) and either a network (108) or a segment of shared
remote memory (346). DMA transfers between endpoint
(338) on compute node (152) and endpoint (342) on another
compute node (153) also go through DMA controllers (225,
226) and either a network (108) or a segment of shared remote
memory (346). The segment of shared remote memory (346)
is a component of a Non-Uniform Memory Access
(‘NUMA’) architecture, a segment in a memory module
installed anywhere in the architecture of a parallel computer
except on a local compute node. The segment of shared
remote memory (346) is ‘remote’ in the sense that it is not
installed on a local compute node. A local compute node is
‘local’ to the endpoints located on that particular compute
node. The segment of shared remote memory (346), there-
fore, is ‘remote’ with respect to endpoints (338, 340) on
compute node (158) if it is in a memory module on compute
node (153) or anywhere else in the same parallel computer
except on compute node (158).

Endpoints (342, 344) being as they are on the same com-
pute node (153) can effect DMA data transfers between end-
points (342, 344) through DMA controller (226) and a seg-
ment of shared local memory (348). In the absence of such
shared memory (348), endpoints (342, 344) can effect DMA
data transfers through the DMA controller (226) and the
network (108), even though both endpoints (342, 344) are on
the same compute node (153). DMA transfers between end-
point (344) on compute node (153) and endpoint (340) on
another compute node (152) go through DMA controllers
(226, 225) and either a network (108) or a segment of shared
remote memory (346). DMA transfers between endpoint
(342) on compute node (153) and endpoint (338) on another
compute node (158) go through DMA controllers (226, 225)
and either a network (108) or a segment of shared remote
memory (346). Again, the segment of shared remote memory
(346) is ‘remote’ with respect to endpoints (342, 344) on
compute node (153) if it is in a memory module on compute
node (158) or anywhere else in the same parallel computer
except on compute node (153).

FIG. 11 sets forth a flow chart illustrating a functional
block diagram of an example processor (199) that includes a
collective communication optimizer (198) useful for optimi-
zation of collective communications in a parallel computer
according to embodiments of the present invention.

In the example of FIG. 11, the processor (199) includes
four multi-chip modules (MCMs) (1110-113). A multi-chip

30

40

45

50

60

65

24

module (MCM) is a specialized electronic package where
multiple integrated circuits (ICs), semiconductor dies or other
discrete components are packaged onto a unifying substrate,
facilitating their use as a single component (as though a larger
1C). The MCM itself will often be referred to as a “chip” in
designs, thus illustrating its integrated nature. Although only
four MCMs are illustrated in the example of FIG. 11, readers
of'skill in the art will realize that a plurality of any number of
MCMs may be included in the processor (199). Each MCM in
the example of FIG. 11 includes four cores. A core or central
processing unit (CPU) is hardware within a computer system
which carries out the instructions of a computer program by
performing the basic arithmetical, logical, and input/output
operations of the system. For example, first MCM (1110)
includes cores (1120-1123), second MCM (1111) includes
cores (1124-1127), third MCM (1112) includes cores (1128-
1131), and fourth MCM (1113) includes cores (1132-1135).
Although only four cores are illustrated in each MCM, read-
ers of skill in the art will realize that a plurality of any number
of'cores may be included in each MCM. In addition, each core
includes a plurality of hardware threads (1160-1175). A hard-
ware thread is an execution block that shares resources of a
single core: the computing units, the CPU caches and the
translation lookaside buffer (TLB). Although only four hard-
ware threads are illustrated in each core, readers of skill in the
art will realize that a plurality of any number of hardware
threads may be included in each core.

For further explanation, FIG. 12 sets forth a flow chart
illustrating an example method of optimizing collective com-
munications within a parallel computer according to embodi-
ments of the present invention. For ease of explanation, the
method of FIG. 12 is explained with reference to elements,
components, and processes of FIGS. 1-11. The method of
FIG. 12 is carried out in a parallel computer similar to the
example parallel computer (100) of FIG. 1. Such a parallel
computer (100) includes a plurality of compute nodes. Each
compute node is configured to execute a plurality of processes
and parallel application (156).

The method of FIG. 12 includes determining (1202) for
each software thread (197), an affinity (1220) of the software
thread (197) to a particular hardware thread (1160-1175).
Each affinity indicates an assignment of a software thread to
a particular hardware thread. Determining (1202) an affinity
(1220) of the software thread (197) to a particular hardware
thread (1160-1175) may be carried out by retrieving location
information of software threads and using the location infor-
mation to determine which software threads are pinned or
assigned to a particular hardware thread. For example, a first
software thread may be assigned to one of the hardware
threads (1160) in a first core (1120) and a second software
thread may be assigned to one of the hardware threads (1161)
in a second core (1121).

The method of FIG. 12 also includes generating (1204) one
or more affinity domains (1222) based on the affinities (1220)
of the software threads (197). An affinity domain indicates
which software threads are assigned to hardware threads of
the same hardware domain. A hardware domain may refer to
an organizational level within a processor. Examples of hard-
ware domains include a core domain, a multi-chip module
(MCM) domain, and a processor domain. Generating (1204)
one or more affinity domains (1222) may be carried out by
determining which software threads are assigned to hardware
threads of a particular hardware domain and creating a list
containing indications of all of the software threads deter-
mined to be assigned to hardware threads of that hardware
domain. For example, an affinity domain that indicates ‘core’
affinity would include indications of all the software threads

US 9,116,750 B2

25

assigned to hardware threads within that particular core. As
another example, an affinity domain that indicates MCM
affinity would include indications of all the software threads
assigned to hardware threads within that particular MCM.

The method of FIG. 12 also includes generating (1206), for
each affinity domain (1222), a topology (1224) of the affinity
domain based on the affinities (1220) of the software threads
(197) to the hardware threads (1160-1175). Generating
(1206) atopology (1224) of an affinity domain may be carried
out by determining communication connections for software
threads associated with a particular affinity domain. For
example, an affinity domain corresponding to MCM (1110)
of FIG. 1 may include software threads assigned to the plu-
rality of hardware threads (1160) of the core (1120) and
software threads assigned to the plurality of hardware threads
(1161) of the core (1121). In this example, a topology gener-
ated based on the affinities (1120) may create one topology
for communications between software threads assigned to the
core (1120), another topology for communications between
software threads assigned to the core (1121), and a third
topology for communications between a software thread
assigned to the core (1120) and a software thread assigned to
the core (1121).

The method of FIG. 12 also includes performing (1208) a
collective operation (1226) on one or more software threads
(197) based on the generated topologies (1224) of the affinity
domains (1222). Collective operations are implemented with
data communications among the compute nodes of an opera-
tional group. Collective operations are those functions that
involve all the compute nodes of an operational group. A
collective operation is an operation, a message-passing com-
puter program instruction that is executed simultaneously,
that is, at approximately the same time, by all the compute
nodes in an operational group of compute nodes. Performing
(1208) a collective operation (1226) on one or more software
threads (197) based on the generated topologies (1224) of the
affinity domains (1222) may be carried out by sending and
receiving data between the software threads in accordance
with the generated topologies (1124). For example, software
threads associated with a core affinity domain may transmit
data based on a n-ary tree pattern while software threads from
different affinity domains wishing to communicate may use
designated software threads (or affinity domain leaders) to
communicate between affinity domains.

For further explanation, FIG. 13 sets forth a flow chart
illustrating an example method of optimizing collective com-
munications within a parallel computer according to embodi-
ments of the present invention. For ease of explanation, the
method of FIG. 13 is explained with reference to elements,
components, and processes of FIGS. 1-11. The method of
FIG. 13 is carried out in a parallel computer similar to the
example parallel computer (100) of FIG. 1. Such a parallel
computer (100) includes a plurality of hardware threads for
executing software threads of a parallel application.

The method of FIG. 13 is similar to the method of FIG. 12
in that the method of FIG. 13 includes: determining (1202) for
each software thread (197), an affinity (1220) of the software
thread (197) to a particular hardware thread (1160-1175);
generating (1204), based on the affinities (1220) of the soft-
ware threads (197), one or more affinity domains (1222);
generating (1206), for each affinity domain (1222), a topol-
ogy (1224) of the affinity domain based on the affinities
(1220) of the software threads (197) to the hardware threads
(1160-1175); and performing (1208), based on the generated
topologies (1224) of the affinity domains (1222), a collective
operation (1226) on one or more software threads (197).

10

15

20

25

30

35

40

45

50

55

60

65

26

In the method of FIG. 13, however, generating (1204) one
or more affinity domains (1222) includes generating (1302),
for each core (1120-1127), a core affinity domain (1320)
indicating the software threads assigned to the hardware
threads within the core. Generating (1302) a core affinity
domain (1320) may be carried out by determining which
software threads are assigned to hardware threads of a par-
ticular core and creating a list contains indications of all of the
software threads determined to be assigned to hardware
threads of that core.

In the method of FIG. 13, generating (1204) one or more
affinity domains (1222) also includes generating (1304), for
each MCM (1110-1113), a MCM affinity domain (1322)
indicating the software threads assigned to the hardware
threads within the MCM. Generating (1304) a MCM affinity
domain (1322) may be carried out by determining which
software threads are assigned to hardware threads of a par-
ticular MCM and creating a list contains indications of all of
the software threads determined to be assigned to hardware
threads of that MCM.

In the method of FIG. 13, generating (1204) one or more
affinity domains (1222) also includes generating (1306), for
the processor (199), a processor affinity domain (1324) indi-
cating the software threads assigned to the hardware threads
within the processor (199). Generating (1306) a processor
affinity domain (1324) may be carried out by determining
which software threads are assigned to hardware threads of a
particular processor and creating a list contains indications of
all of the software threads determined to be assigned to hard-
ware threads of that processor.

For further explanation, FIG. 14 sets forth a flow chart
illustrating an example method of optimizing collective com-
munications within a parallel computer according to embodi-
ments of the present invention. For ease of explanation, the
method of FIG. 14 is explained with reference to elements,
components, and processes of FIGS. 1-11. The method of
FIG. 14 is carried out in a parallel computer similar to the
example parallel computer (100) of FIG. 1. Such a parallel
computer (100) includes a plurality of hardware threads for
executing software threads of a parallel application.

The method of FIG. 14 is similar to the method of FIG. 12
in that the method of FIG. 14 includes: determining (1202) for
each software thread (197), an affinity (1220) of the software
thread (197) to a particular hardware thread (1160-1175);
generating (1204), based on the affinities (1220) of the soft-
ware threads (197), one or more affinity domains (1222);
generating (1206), for each affinity domain (1222), a topol-
ogy (1224) of the affinity domain based on the affinities
(1220) of the software threads (197) to the hardware threads
(1160-1175); and performing (1208), based on the generated
topologies (1224) of the affinity domains (1222), a collective
operation (1226) on one or more software threads (197).

In the method of FIG. 14, however, determining (1202) for
each software thread (197), an affinity (1220) of the software
thread (197) to a particular hardware thread (1160-1175)
includes querying (1402) an operating system (162) for soft-
ware thread locality information (1420) corresponding to the
software thread. Querying (1402) an operating system (162)
for software thread locality information (1420) correspond-
ing to the software thread may be carried out by sending a
request to the operating system (162) to retrieve software
thread locality information and receiving the software thread
locality information.

In the method of FIG. 14, generating (1206), for each
affinity domain (1222), a topology (1224) of the affinity
domain based on the affinities (1220) of the software threads
(197) to the hardware threads (1160-1175) includes generat-

US 9,116,750 B2

27

ing (1404), for each affinity domain, an n-ary tree (1422)
representing a communication organization among the soft-
ware threads associated with the affinity domain. An n-ary
tree is a rooted tree in which each node has no more than n
children. Generating (1404), for each affinity domain, an
n-ary tree (1422) representing a communication organization
among the software threads associated with the affinity
domain may be carried out by creating a data structure indi-
cating which software threads communicate with each other
in a particular affinity domain.

In the method of FIG. 14, performing (1208), based on the
generated topologies (1224) of the affinity domains (1222), a
collective operation (1226) on one or more software threads
(197) includes performing (1406), for each affinity domain, in
accordance with the generated n-ary tree (1422), a reduction
operation (1424) on the software threads associated with the
affinity domain. A collective operation requires that all pro-
cesses on all compute nodes within an operational group call
the same collective operation with matching arguments. A
‘reduce’ operation is an example of a collective operation that
executes arithmetic or logical functions on data distributed
among the compute nodes of an operational group. Perform-
ing (1406) a reduction operation (1424) on the software
threads associated with the affinity domain in accordance
with the generated n-ary tree (1422) may be carried out by
carrying out arithmetic or logical functions on data from
software threads within the affinity domain.

For further explanation, FIG. 15 sets forth a flow chart
illustrating an example method of optimizing collective com-
munications within a parallel computer according to embodi-
ments of the present invention. For ease of explanation, the
method of FIG. 15 is explained with reference to elements,
components, and processes of FIGS. 1-11. The method of
FIG. 15 is carried out in a parallel computer similar to the
example parallel computer (100) of FIG. 1. Such a parallel
computer (100) includes a plurality of hardware threads for
executing software threads of a parallel application.

The method of FIG. 15 is similar to the method of FIG. 12
in that the method of FIG. 15 includes: determining (1202) for
each software thread (197), an affinity (1220) of the software
thread (197) to a particular hardware thread (1160-1175);
generating (1204), based on the affinities (1220) of the soft-
ware threads (197), one or more affinity domains (1222);
generating (1206), for each affinity domain (1222), a topol-
ogy (1224) of the affinity domain based on the affinities
(1220) of the software threads (197) to the hardware threads
(1160-1175); and performing (1208), based on the generated
topologies (1224) of the affinity domains (1222), a collective
operation (1226) on one or more software threads (197).

In the method of FIG. 15, generating (1206), for each
affinity domain (1222), a topology (1224) of the affinity
domain based on the affinities (1220) of the software threads
(197) to the hardware threads (1160-1175) includes designat-
ing (1502), for each affinity domain, an affinity domain leader
(1522). Designating (1502) an affinity domain leader (1522)
may be carried out by selecting one of the software threads
associated with a particular affinity domain to be the ‘leader’
of that affinity domain. The affinity domain leader may be
used to communicate with other affinity domain leaders such
that software threads in different affinity domains may use
only the domain leaders to communicate with each other.

In the method of FIG. 15, performing (1208), based on the
generated topologies (1224) of the affinity domains (1222), a
collective operation (1226) on one or more software threads
(197) includes performing (1504) a barrier operation (1524)
on each of the affinity domain leaders (1522). A collective
operation requires that all processes on all compute nodes

10

15

20

25

30

35

40

45

50

55

60

65

28

within an operational group call the same collective operation
with matching arguments. A ‘barrier operation’ is an example
of'a collective operation that is issued by each thread partici-
pating in the barrier operation and only can complete when all
threads have entered and left the collective barrier operation.
Performing (1504) a barrier operation (1524) on each of the
affinity domain leaders (1522) may be carried out by each
affinity domain leader issuing a barrier operation and waiting
until each of the other affinity domain leaders has entered and
left the barrier operation.

In the method of FIG. 15, performing (1208), based on the
generated topologies (1224) of the affinity domains (1222), a
collective operation (1226) on one or more software threads
(197) includes broadcasting (1506), for each affinity domain
leader (1522), from the affinity domain leader to the software
threads within the affinity domain corresponding to the affin-
ity domain leader, results (1526) of the barrier operation
(1524). A collective operation requires that all processes on
all compute nodes within an operational group call the same
collective operation with matching arguments. A ‘broadcast’
is an example of a collective operation for moving data among
compute nodes of an operational group. Broadcasting (1506)
from the affinity domain leader to the software threads within
the affinity domain corresponding to the affinity domain
leader, results (1526) of the barrier operation (1524) may be
carried out by transmitting between affinity domain leaders,
the results of the barrier operations.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and

US 9,116,750 B2

29

that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession

20

30

40

45

55

65

30

may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

It will be understood from the foregoing description that
modifications and changes may be made in various embodi-
ments of the present invention without departing from its true
spirit. The descriptions in this specification are for purposes
of illustration only and are not to be construed in a limiting
sense. The scope of the present invention is limited only by
the language of the following claims.

What is claimed is:

1. A method of optimizing collective communications
within a parallel computer, the parallel computer comprising
aplurality of hardware threads for executing software threads
of a parallel application, the method comprising:

determining for each software thread, by a processor of the

parallel computer, an affinity of the software thread to a
particular hardware thread, each affinity indicating an
assignment of a software thread to a particular hardware
thread, wherein the processor further comprises one or
more multi-chip modules (MCM) each MCM compris-
ing a plurality of cores;

generating, based on the affinities of the software threads,

one or more affinity domains, wherein an affinity
domain indicates which software threads are assigned to
hardware threads of a same hardware domain, including:
generating, for each core, a core affinity domain indicat-
ing the software threads assigned to the hardware
threads within the core,
generating, for each MCM, a MCM affinity domain
indicating the software threads assigned to the hard-
ware threads within the MCM, and
generating, for the processor, a processor affinity
domain indicating the software threads assigned to
the hardware threads within the processor;
generating, for each affinity domain, a topology of the
affinity domain based on the affinities of the software
threads to the hardware threads, including generating,
for each affinity domain, an n-ary tree representing a
communication organization among the software
threads associated with the affinity domain; and
performing, based on the generated topologies of the affin-
ity domains, a collective operation on one or more soft-
ware threads, wherein performing the collective opera-
tion on one or more software threads based on the
generated topologies of the affinity domains includes
performing, for each affinity domain, in accordance with
the generated n-ary tree, a reduction operation on the
software threads associated with the affinity domain.

2. The method of claim 1 wherein generating, for each
affinity domain, the topology of the affinity domain based on
the affinities of the software threads to the hardware threads
includes designating, for each affinity domain, an affinity
domain leader.

3. The method of claim 2 wherein performing the collective
operation on one or more software threads based on the gen-
erated topologies of the affinity domains includes:

performing a barrier operation on each of the affinity

domain leaders; and

broadcasting, for each affinity domain leader, from the

affinity domain leader to the software threads within the

US 9,116,750 B2

31

affinity domain corresponding to the affinity domain
leader, results of the barrier operation.

4. The method of claim 1, wherein determining for each
software thread, by the processor of the parallel computer, an
affinity of the software thread to a particular hardware thread
includes querying an operating system for software thread
locality information corresponding to the software thread.

5. An apparatus for optimizing collective communications
within a parallel computer, the parallel computer comprising
aplurality of hardware threads for executing software threads
of'a parallel application, the apparatus comprising a computer
processor, a computer memory operatively coupled to the
computer processor, the computer memory having disposed
within it computer program instructions that, when executed,
cause the apparatus to carry out the steps of:

determining for each software thread, by a processor of the

parallel computer, an affinity of the software thread to a
particular hardware thread, each affinity indicating an
assignment of a software thread to a particular hardware
thread, wherein the processor further comprises one or
more multi-chip modules (MCM), each MCM compris-
ing a plurality of cores;

generating, based on the affinities of the software threads,

one or more affinity domains, wherein an affinity
domain indicates which software threads are assigned to
hardware threads of'a same hardware domain, including:
generating, for each core, a core affinity domain indicat-
ing the software threads assigned to the hardware
threads within the core,
generating, for each MCM, a MCM affinity domain
indicating the software threads assigned to the hard-
ware threads within the MCM, and
generating, for the processor, a processor affinity
domain indicating the software threads assigned to
the hardware threads within the processor;
generating, for each affinity domain, a topology of the
affinity domain based on the affinities of the software
threads to the hardware threads, including generating,
for each affinity domain, an n-ary tree representing a
communication organization among the software
threads associated with the affinity domain; and
performing, based on the generated topologies of the affin-
ity domains, a collective operation on one or more soft-
ware threads, wherein performing the collective opera-
tion on one or more software threads based on the
generated topologies of the affinity domains includes
performing, for each affinity domain, in accordance with
the generated n-ary tree, a reduction operation on the
software threads associated with the affinity domain.

6. The apparatus of claim 5 wherein generating, for each
affinity domain, the topology of the affinity domain based on
the affinities of the software threads to the hardware threads
includes designating, for each affinity domain, an affinity
domain leader.

7. The apparatus of claim 6 wherein performing the col-
lective operation on one or more software threads based on
the generated topologies of the affinity domains includes:

performing a barrier operation on each of the affinity

domain leaders; and

broadcasting, for each affinity domain leader, from the

affinity domain leader to the software threads within the
affinity domain corresponding to the affinity domain
leader, results of the barrier operation.

8. The apparatus of claim 5, wherein determining for each
software thread, by the processor of the parallel computer, an
affinity of the software thread to a particular hardware thread

10

15

20

25

30

35

40

45

50

55

60

65

32

includes querying an operating system for software thread
locality information corresponding to the software thread.

9. A computer program product for optimizing collective
communications within a parallel computer, the parallel com-
puter comprising a plurality of hardware threads for execut-
ing software threads of a parallel application, the computer
program product disposed upon a computer readable
medium, wherein the computer readable medium is not a
signal, the computer program product comprising computer
program instructions that, when executed, cause a computer
to carry out the steps of:

determining for each software thread, by a processor of the

parallel computer, an affinity of the software thread to a
particular hardware thread, each affinity indicating an
assignment of a software thread to a particular hardware
thread, wherein the processor further comprises one or
more multi-chip modules (MCM) each MCM compris-
ing a plurality of cores;

generating, based on the affinities of the software threads,

one or more affinity domains, wherein an affinity
domain indicates which software threads are assigned to
hardware threads of a same hardware domain, including:
generating, for each core, a core affinity domain indicat-
ing the software threads assigned to the hardware
threads within the core,
generating, for each MCM, a MCM affinity domain
indicating the software threads assigned to the hard-
ware threads within the MCM, and
generating, for the processor, a processor affinity
domain indicating the software threads assigned to
the hardware threads within the processor;
generating, for each affinity domain, a topology of the
affinity domain based on the affinities of the software
threads to the hardware threads, including generating,
for each affinity domain, an n-ary tree representing a
communication organization among the software
threads associated with the affinity domain; and
performing, based on the generated topologies of the affin-
ity domains, a collective operation on one or more soft-
ware threads, wherein performing the collective opera-
tion on one or more software threads based on the
generated topologies of the affinity domains includes
performing, for each affinity domain, in accordance with
the generated n-ary tree, a reduction operation on the
software threads associated with the affinity domain.

10. The computer program product of claim 9, wherein
generating, for each affinity domain, the topology of the
affinity domain based on the affinities of the software threads
to the hardware threads includes designating, for each affinity
domain, an affinity domain leader.

11. The computer program product of claim 10, wherein
performing the collective operation on one or more software
threads based on the generated topologies of the affinity
domains includes:

performing a barrier operation on each of the affinity

domain leaders; and

broadcasting, for each affinity domain leader, from the

affinity domain leader to the software threads within the
affinity domain corresponding to the affinity domain
leader, results of the barrier operation.

12. The computer program product of claim 9, wherein
determining for each software thread, by the processor of the
parallel computer, an affinity of the software thread to a
particular hardware thread includes querying an operating
system for software thread locality information correspond-
ing to the software thread.

US 9,116,750 B2
33

13. The computer program product of claim 9 wherein the
computer readable medium comprises a computer readable
storage medium.

34

